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Abstract

The temporal contiguity effect (TCE) is the tendency for the recall of one event to cue

recall of other events originally experienced nearby in time. Retrieved Context Theory

proposes that the TCE results from fundamental properties of episodic memory: binding of

events to a drifting context representation during encoding and the reinstatement of those

associations during recall. If these processes are automatic, the TCE should not be

dependent on any particular encoding strategy and should, in fact, be present regardless of

encoding intentionality. Here, we ask whether this theory is compatible with recent

findings that the TCE is dramatically reduced under incidental encoding, even though

memory accuracy is only modestly reduced. We begin by attempting to replicate this

finding in a new large-scale study with over 5,000 subjects in which we manipulated

encoding intentionality between subjects in both delayed free recall and continual

distractor free recall. A small, but reliable, TCE was observed in all conditions, although

the effect was dramatically reduced in incidental encoding. In a simulation study, we

demonstrated that Retrieved Context Theory can simultaneously account for both overall

recall and the strength of the TCE in incidental encoding conditions. Additional analyses

revealed that the incidental TCE is not an artifact of theoretically uninteresting factors,

such as recency, and is consistent with being generated by the core contextual dynamics of

Retrieved Context Theory.
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A Test of Retrieved Context Theory: Dynamics of Recall After Incidental Encoding

Retrieved Context Theory proposes that all episodic memories depend on a drifting

mental context representation (Howard & Kahana, 2002). The theory assumes that during

encoding new memories are formed by associating experienced events with the current state

of this context representation. Then, during memory search, event-to-context associations

allow context to serve as a cue to recall events. Retrieved Context Theory forms the basis

of a set of models of free recall that provide quantitatively precise accounts of dynamics of

memory search (see Healey & Kahana, 2014, 2016; Howard & Kahana, 2002; Howard,

Shankar, Aue, & Criss, 2015; Lohnas, Polyn, & Kahana, 2015; Polyn, Norman, & Kahana,

2009; Sederberg, Howard, & Kahana, 2008). The theory has been applied to explain many

phenomena, including the testing effect (Karpicke, Lehman, & Aue, 2014), directed

forgetting (Sahakyan, Delaney, Foster, & Abushanab, 2013), retrieval-induced

forgetting (Kliegl & Bäuml, 2016), age-related change (Healey & Kahana, 2020; Wahlheim

& Huff, 2015), individual differences (Healey, Crutchley, & Kahana, 2014; Healey &

Uitvlugt, 2019), amnesia (Palombo, Di Lascio, Howard, & Verfaellie, 2018; Sederberg et al.,

2008), and event segmentation (Ezzyat & Davachi, 2014; Sahakyan & Smith, 2014).

In addition to providing an explanation for a broad range of memory effects,

Retrieved Context Theory also makes many clear, testable predictions. Here, we test one

prediction that cuts to the very heart of the theory: episodic memories should contain

specific information about the temporal order of events, even when the memories are

encoded incidentally. We begin by describing the encoding and retrieval mechanisms that

lead to this prediction.

Memory for temporal order as an emergent property of contextual dynamics

Under Retrieved Context Theory, memory for temporal order naturally emerges from

the combination of several mechanisms that operate during encoding and retrieval. We will

illustrate this by describing the theory’s account of the free recall task (we provide a more
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in-depth explanation in later sections). In standard free recall, a list of items (usually

words) is presented one at a time for study. At the end of the list, the subject is asked to

recall as many items as possible in whatever order they come to mind.

In Retrieved Context Theory’s account of free recall, two key mechanisms operate

during the encoding phase. First, each newly presented item becomes associated with the

state of context that prevailed when it was presented. As a result of these associations,

context can later serve as a retrieval cue. Second, each item activates its own mental

representations, which are then incorporated into the existing state of context.

Incorporating previous items causes context to change, or drift. As a result of this drift,

the state of context that prevails when a given item is presented is most similar to states

that prevailed at nearby points in time—context drifts in an autocorrelated fashion. In this

way, context carries information about the temporal distance between items. Together,

these new item-context associations and the mechanism of context drift allow the context

associated with one item to provide a very good cue for other items that were originally

studied nearby in time.

Retrieved Context Theory’s account of retrieval is based on two additional

mechanisms. First, memory search is initiated by using the current state of the context

representation as a retrieval cue. Second, upon successful recall of an item, the item’s

associated mental context is re-activated, or reinstated. The reinstated context then helps

cue another item. Since items presented closer together in time are associated with more

similar contexts, the reinstated context most strongly cues items studied immediately

before or after the just-recalled item. Thus, Retrieved Context Theory naturally predicts a

temporal contiguity effect (TCE): the tendency for the recall of one item to be followed by

recall of another item that was originally experienced close in time to the first. Such an

effect has been widely observed in laboratory tasks (for a review, see Healey, Long, &

Kahana, 2019), including in free recall (Kahana, 1996; Murdock, 1974; Postman, 1971),

recognition (Averell, Prince, & Heathcote, 2016; Sadeh, Moran, & Goshen-Gottstein, 2015;
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Schwartz, Howard, Jing, & Kahana, 2005; but see Bradley & Glenberg, 1983), paired

associate tasks (Campbell & Hasher, 2018; Caplan, Glaholt, & McIntosh, 2006; Davis,

Geller, Rizzuto, & Kahana, 2008; but, see Osth & Fox, 2019), and even with “real-world”

stimuli such as autobiographical memories and news stories (Diamond & Levine, 2019;

Moreton & Ward, 2010; Uitvlugt & Healey, 2019).

Notice that the encoding and retrieval mechanisms utilized in Retrieved Context

Theory lie at the heart of both recall success and the TCE: they allow for recall of

individual items and simultaneously result in a tendency for items to come to mind in

temporal order. Thus, Retrieved Context Theory predicts a TCE in almost any situation

where episodic memories are formed.1 By contrast, many competing theories of episodic

memory suggest a TCE should occur under only certain circumstances (Healey et al.,

2019). A theory that attributes the effect to binding in short-term or working memory, for

example, would predict a TCE only when items are presented close enough in time to allow

temporally adjacent items to co-occupy the short-term buffer and form inter-item

associations (Howard & Kahana, 1999). Similarly, theories based on control processes like

strategic rehearsal predict a TCE only when items are studied intentionally (Healey, 2018;

Hintzman, 2016). This divergence of predictions makes the TCE an important tool for

testing Retrieved Context Theory against other theories of episodic memory.

Here, we will consider one particularly diagnostic situation: incidental encoding.

Retrieved Context Theory makes the strong prediction that under incidental encoding,

successful recall of items should be accompanied by a TCE. Moreover, a formal model of

the theory should be able to precisely fit the size and shape of the effect (Healey, 2018).

Conversely, many other theories predict little or no TCE under incidental encoding, such as

those which posit that temporal information is only encoded through intentional use of

1 Under Retrieved Context Theory, episodic memories are inherently dependent on the formation of
item-context associations; thus, it predicts a TCE in almost all situations. However, there are technically
some special cases where the models based on Retrieved Context Theory can form episodic memories
without producing a TCE. These include cases where context does not drift during encoding and cases
where new item-context associations are formed during study but are not reinstated at recall.



RECALL AFTER INCIDENTAL ENCODING 6

control processes (Healey et al., 2019). In a serious challenge to Retrieved Context Theory,

some work has found that when subjects are not expecting a memory test, the TCE is

greatly reduced even though overall recall remains high (Healey, 2018; Nairne, Cogdill, &

Lehman, 2017). It is unclear if this pattern of substantial recalls paired with a very small

TCE in incidental encoding is consistent with the prediction of Retrieved Context Theory

that these measures should be coupled—if not, the theory would be all but falsified, and

the results would instead support an account which attributes the TCE entirely to

strategic control processes.

We argue that for Retrieved Context Theory to be fully compatible with the

incidental TCE, three criteria must be met: 1) a TCE must be present under incidental

encoding at both short and long timescales, 2) a model of Retrieved Context Theory must

be able to simultaneously fit not only the incidental TCE, but also the number of items

recalled, and 3) the nature of the incidental TCE must be consistent with being generated

by a context reinstatement mechanism. We elaborate on each of these criteria below.

Timescale similarity

Retrieved Context Theory predicts that temporal contiguity should occur across

timescales (Howard, 2004); a TCE should occur, to some degree, regardless of the time

passing between item presentations. The context drift mechanism entails that, in almost all

situations, the similarity of the mental contexts associated with any two items is correlated

with the relative temporal distance between them. The absolute time passing between item

presentations should not change this. Items studied 1 second apart will be associated with

more similar contexts than items studied 10 seconds apart. Similarly, items studied 10

seconds apart will be associated with more similar contexts than those studied 100 seconds

apart. Many other memory models would not predict this timescale similarity (Healey et

al., 2019). For example, theories based on binding in a short-term buffer (e.g., Raaijmakers

& Shiffrin, 1981) often assume that items presented close together in time are more likely
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to occupy the buffer simultaneously (Phillips, Shiffrin, & Atkinson, 1967). As such, binding

in a short-term buffer would produce a TCE when items are encoded 1 second apart, but

not when there is a distraction-filled delay between items because a filled delay should

prevent multiple items from being active in the short-term buffer at any given moment and

abolish the TCE (Howard & Kahana, 1999).

Supporting Retrieved Context Theory’s prediction that the TCE should be consistent

regardless of timescale, a significant TCE has been found using continual distractor free

recall (CDFR), in which a distractor task of sufficient duration to fill the buffer intervenes

between each item presentation (Howard & Kahana, 1999). A TCE has been observed at

longer timescales as well, even when items are separated by hours (Cortis Mack, Cinel,

Davies, Harding, & Ward, 2017).

In these previous CDFR experiments, however, subjects deliberately encoded stimuli.

Therefore, an explanation based on binding in a short-term buffer would still be able to

account for the TCE in CDFR if deliberate control processes are not fully disrupted by the

distractor task. For example, a subject might engage in rehearsal during the distractor task

or may intentionally bring to mind a previous item while studying a new item. Such

control processes would allow items separated by long delays to still co-occupy short-term

memory and form temporal bonds. In incidental encoding, when subjects are unaware their

memory will be tested, there is no reason to engage such deliberate control processes, and

thus a short-term buffer explanation would predict a null TCE. In contrast, Retrieved

Context Theory would still predict a TCE in CDFR even under incidental encoding. A few

studies have examined recall and temporal contiguity in realistic situations, where items

are presumably incidentally encoded (Moreton & Ward, 2010; Uitvlugt & Healey, 2019),

but these data are not well-suited for modeling. Examining recall with incidental encoding

in a well-controlled CDFR task is key: failing to find a significant TCE in an incidental

CDFR task would support accounts based on binding in a short-term buffer and pose a

serious challenge to Retrieved Context Theory.
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A link between recall and the TCE

Another key feature of Retrieved Context Theory is that both memory for individual

items and memory for temporal order arise from the same mechanisms. As a result, the

framework predicts a tight coupling between overall recall and temporal contiguity.

Stronger associations between items and the prevailing mental contexts at encoding causes

the recall of a given list item to generate a stronger reinstated context cue for recalling

adjacent list items. This will tend to increase both recall and the TCE. Alternatively,

failing to form or reinstate item-context associations should decrease both recall and the

TCE (e.g., Palombo et al., 2018). Indeed, a correlation between the size of the TCE and

recall levels has been reported for tasks using intentional encoding instructions (Healey et

al., 2014; Sederberg, Miller, Howard, & Kahana, 2010; Spillers & Unsworth, 2011). In

incidental encoding tasks, this relationship is much weaker. Whereas overall recall is

slightly lower in incidental compared to intentional encoding tasks (Glenberg et al., 1980;

Marshall & Werder, 1972; Nairne et al., 2017; Neath, 1993), the TCE is greatly

reduced (Healey, 2018; Nairne et al., 2017). Moreover, variations in recall levels across

incidental encoding tasks do not correlate with the size of the TCE (Healey, 2018). It is

unclear if models of Retrieved Context Theory can simulate this degree of decoupling

between overall recall and contiguity. Thus, to fully explain the dynamics of incidental

encoding, Retrieved Context Theory must be able to simultaneously fit a pattern of

substantial recall and a small TCE.

The TCE must be distinct from the recency effect

Under Retrieved Context Theory, two distinct factors can contribute to the TCE.

The first, as we have already discussed, is context reinstatement. During encoding,

autocorrelated context drift allows context to carry information about item order. During

recall, the context associated with a just-recalled item is brought to mind through context

reinstatement and is incorporated into the current mental context, causing context to drift.
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This context then serves as a cue which will tend to activate items studied nearby in time,

since the context carries information about temporal order.

Although context reinstatement is a key mechanism of Retrieved Context Theory, it

is not the only factor which contributes to the TCE. Contiguity can also be generated

through recency. At the beginning of the recall period, the theory assumes the current

state of mental context is used as a cue to begin recalling items. All else being equal, the

autocorrelated drift of context during the study phase ensures that this end-of-list context

is most strongly associated with end-of-list items. Thus, these end-of-list items are likely to

be recalled first (as indeed they are in immediate free recall tasks; Hogan, 1975; Howard &

Kahana, 1999; Laming, 1999). Because end-of-list items were studied close together in

time, the bias to recall recent items first entails successively recalling several events that

were experienced close in time—the recency effect naturally enhances the TCE (Davelaar,

Goshen-Gottstein, Ashkenazi, Haarmann, & Usher, 2005; Kahana, 1996). Indeed, as we

will see, a strong recency effect is sufficient to produce a TCE even in the absence of any

other contiguity-generating mechanisms.

Thus, under Retrieved Context Theory, the TCE observed with intentional encoding

is produced by a combination of both context reinstatement and recency mechanisms.

Under any straight-forward interpretation, the theory would predict that both of these

mechanisms also operate during incidental encoding. It is possible, however, that this

straight-forward interpretation is wrong and that context reinstatement makes no

contribution to the TCE in incidental encoding.2 If so, it would indicate that although

both intentional and incidental encoding produce a contiguity effect, they actually

represent very different types of contiguity. This would severely limit the explanatory scope

of Retrieved Context Theory. Therefore, we will test whether the incidental TCE can be

attributed to recency alone.

2 We thank Per Sederberg for suggesting this possibility.
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Present study

For Retrieved Context Theory to be fully compatible with the nature of the TCE

under incidental encoding, the three criteria specified above must be met: 1) a significant

TCE must be observed for incidental encoding in CDFR, 2) a model of Retrieved Context

Theory must be able to simulate temporal contiguity and overall recall in incidental

encoding, and 3) the TCE in incidental encoding must be consistent with being generated

not just by recency but also by context reinstatement. To test these criteria, we collected

data from subjects in both intentional and incidental encoding conditions in either a

delayed free recall (DFR) or a CDFR task. We tested whether a TCE was present in all

conditions. Then, we evaluated the ability of a specific model of Retrieved Context Theory

to simultaneously fit overall recall and temporal contiguity. To determine if recency alone

can explain the incidental TCE, we also conducted novel analyses that controlled for the

effects of recency. Finally, we examined the necessity of the context drift and reinstatement

mechanisms that are central to Retrieved Context Theory.

Methods

Data Sharing

All data analyzed in this report are freely available on the Open Science Framework

at https://osf.io/wdhn8/.

Subjects and Design

The methods closely follow those of Healey (2018) except as noted below.

Based on the average effect size calculated for a variety of incidental encoding

conditions in Healey (2018), achieving 95% power to detect the TCE in incidental encoding

requires a sample size of at least 510 subjects per condition. However, in addition to

detecting the effect, another major goal of this study was to fit a computational model.

Because the quality of model fits is limited by variance in the data, we sought to test as
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many subjects as possible. Thus, we set a goal of obtaining data from at least 1,500

subjects per condition for a total of 6,000 subjects.

6,641 subjects were recruited using Amazon Mechanical Turk (MTurk). No subjects

who participated in the MTurk data collection for Healey (2018) were permitted to

participate because of the similarity of these tasks. Subjects were randomly assigned to one

of four conditions in a 2 (encoding type) × 2 (distractor) between-subjects design.

Data were excluded for one subject due to a technical error that prevented them from

completing the task. Data were also excluded from subjects in the incidental encoding

conditions who indicated on a post-experiment questionnaire that they were aware their

memory would be tested and from subjects in any condition who recalled less than 2 items

or more than 24 items (i.e., twice the length of the list). As a result, 304 incidental

subjects were excluded for reporting awareness of a memory test, 893 additional subjects

were excluded for recalling less than 2 correct (i.e., non-intrusion) items in a row, and 3

more subjects were excluded for providing more than 24 responses. Excluding these

subjects increased overall recall for all groups, as many subjects were excluded for recalling

too few items (see Table 1). However, these exclusions did not alter the general pattern of

results for any of our analyses.

We also considered the possibility that some intentionally encoding subjects may

have been cheating, since there was no way to supervise subjects during the task. Less

than 2% of subjects correctly recalled more than 80% of list items. Of these, only one

reported items in perfect serial order, as might be expected if a subject was cheating by

writing down the words as they appeared.

After all exclusions, a total of 5,441 subjects (81.9% of the original sample) were

included in our analyses. See Table 1 for a breakdown of sample sizes and exclusions for

each condition. For the final sample, the average age of subjects was 35.4 years (SD =

11.1), 58.9% were female, 55.3% reported an education level of bachelor’s degree or above,

and all reported English as their first language. Subjects were paid $1.00 for participating
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(a rate of roughly $10/hour). All subjects completed written informed consent, and all

procedures were approved by the Michigan State University’s Institutional Review Board.

Procedure

All subjects viewed a single list of 12 words and were asked to make an animacy

decision for each word (“Is it easy to judge if this word refers to something that is alive?”),

indicating their decision (yes/no) with a key press. Subjects were told that their responses

would be used to guide stimuli selection for a future study. The animacy judgment task

served to ensure subjects were attentive during the encoding period and provide a plausible

reason for subjects in the incidental conditions to be viewing a list of words. In the

intentional conditions, subjects were informed that a free recall test would follow the study

period; subjects in the incidental conditions were given no such warning. The full text of

the instructions given to subjects is provided in the Supplementary Materials.

For each subject, words were drawn from a pool of 1,638 positive or neutrally

valanced nouns, a list developed for the Penn Electrophysiology of Encoding and Retrieval

Study (PEERS; Healey & Kahana, 2014; Lohnas & Kahana, 2014; Miller, Kahana, &

Weidemann, 2012). Words were presented for 4 seconds each, with a 1 second

inter-stimulus interval between words. No instructions were given on whether subjects

should read the words aloud or silently.

Manipulating the presentation of distractors allows for a test of the model’s

prediction of approximate timescale similarity: a TCE should be present regardless of the

amount of time (provided the intervening cognitive activity causes context to drift)

between items. In the DFR control conditions, a 16 second distractor period followed only

the final word. In the CDFR conditions, the same 16 second distractor period followed the

presentation of each word. Each distractor period began with a 1 second blank screen after

the presentation of the previous word, followed by 13 seconds of a math distractor task.

The distractor task required solving addition problems in the form A+B + C = ?, where
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A, B, and C were positive, single-digit integers. Subjects were instructed to “Try to solve

as many problems as you can without sacrificing accuracy.” The task automatically

advanced after the 13 seconds had passed. To ensure subjects noticed when the distractor

task ended, a red screen was presented for 2 seconds after the last problem. Thus, the total

duration of each distractor period was 1 + 13 + 2 = 16 seconds.

Following the end-of-list distractor task, subjects in all conditions were given 75

seconds to recall as many words from the list as possible, in any order. Subjects typed

recalled words into a text box on the computer screen. Once a word had been entered, the

word disappeared and a blank text box was available for the next recall. A spell-checking

algorithm (described in Healey, 2018) checked subjects’ typed responses for typos and

scored their recall accuracy.

After the recall period, subjects completed a demographic and strategy use

questionnaire. Strategy data is not analyzed in this report.

Table 1
Sample sizes and exclusions for awareness and for number of recalls by condition for
intentional and incidental encoding with a delayed free recall (DFR) or continual distractor
free recall (CDFR) task.

Condition n Included n Excluded (for awareness) n Excluded (for recalls)
Intentional DFR 1,487 - 174
Incidental DFR 1,306 163 191
Intentional CDFR 1,406 - 253
Incidental CDFR 1,242 141 277

Results

How does encoding intentionality affect recall initiation and recall accuracy?

Figure 1 displays probability of first recall (PFR) curves and serial position curves

(SPCs) for intentional and incidental encoding groups for both DFR and CDFR. PFR

curves display the probability that an item from a given serial position will be recalled

first. The PFR curves reveal greater recency in incidental encoding and greater primacy in
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intentional encoding. Whereas subjects in the CDFR conditions tended to initiate recall

with items from the end of the list, subjects in the DFR groups were more likely to initiate

recall with beginning-of-list items. These patterns are similar to those seen in other free

recall experiments in which subjects completed a semantic orienting task for each

word (Healey, 2018; Howard & Kahana, 1999).

We analyzed recall accuracy by examining SPCs, which give the probability that an

item from each serial position will be recalled (Figure 1). There is a clear recency effect for

all four groups, albeit stronger in the CDFR conditions. The intentional conditions display

slightly higher recall than the incidental conditions, particularly for words near the

beginning of the list. In all conditions, the primacy effect is small. Although most work

with DFR has found a strong primacy effect (see Bjork & Whitten, 1974; Neath, 1993;

Unsworth, 2008), attenuated primacy has been reported occasionally when subjects must

complete a secondary task during encoding (Bhatarah, Ward, & Tan, 2006; Healey, 2018;

Howard & Kahana, 1999; Marshall & Werder, 1972; Murdock, 1965) or they are otherwise

discouraged from rehearsing (Healey, 2018; Tan & Ward, 2000). Thus, in the present study,

the semantic orienting task used during encoding could account for the reduced primacy in

DFR.

Is there a TCE in incidental encoding?

To analyze the TCE, we examined lag-conditional response probabilities (lag-CRPs).

The unit of analysis for the lag-CRP is a transition: recalling one list item and moving on

to recall another list item. Lag-CRP gives the probability of making transitions of different

temporal distances and directions within a list, measured in terms of lag between items’

original positions within the study list. For example, recalling the 3rd item in the list and

transitioning to the 5th item would be lag = +2 transition. Recalling the 3rd item in the

list followed by the 1st item would be lag = −2 transition. For each lag, a CRP is

calculated by dividing the number of times a transition of that lag was actually made by
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the number of times a transition of that lag was possible. All list items that had not been

previously recalled by the subject are considered possible. A lag of +1, for example, would

not be possible if the just-recalled item was the last item in the list. Similarly, if a subject

recalls the 4th item in the list, followed by the 5th item, and then transitions to a new word,

a lag of −1 would not be possible for that transition, because the item one position back

(item 4) has already been recalled. Lag-CRPs are typically highest for |lags| = 1 and

sharply decrease for farther |lags|. There is also generally a bias for near forward lags,

resulting in a forward asymmetry (Kahana, 1996).

In all four conditions, presented in Figure 2, the lag-CRP is highest for short lags,

decreases for longer lags, and displays the forward asymmetry typically associated with a

TCE. The lag-CRPs for the intentional conditions are consistent with previous findings

that a nonzero TCE is present regardless of distractor task (Howard & Kahana, 1999). The

lag-CRP is flatter in the incidental conditions, particularly in the forward direction,

consistent with reports of a reduced TCE under incidental encoding (Healey, 2018; Nairne

et al., 2017).3 The difference in the shapes of the lag-CRPs across conditions will be

discussed in further detail in a later section, where we introduce a new analysis to

disentangle the influence of recency versus context reinstatement and conduct statistical

tests on the size of the TCE. For now, we simply note that the lag-CRP analysis addresses

the first of the model evaluation criteria: there appears to be a TCE in incidental encoding

with the CDFR task.

3 In all conditions, the TCE is smaller and more symmetric than is typically observed. The highest values
of lag-CRP are typically between 0.3 and 0.5, while the highest lag-CRP in these conditions is below 0.2.
This may be due to our subjects’ lack of task experience. Previous work has found that the size of the
TCE in subjects’ recalls increases with practice: in an analysis of data from the PEERS dataset, the TCE
was present but small in the 1st list, peaking at less than 0.2; by the 12th list, the TCE was much
larger (Healey et al., 2019). These results are also consistent with those for intentional and incidental
encoding observed in Healey (2018), where subjects also studied a single list.
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Can Retrieved Context Theory simultaneously fit recall levels and the TCE in

incidental encoding?

To evaluate the second criterion, whether Retrieved Context Theory can produce

high recall accompanied by a modest TCE, we fit a version of the Temporal Context Model

(Howard & Kahana, 2002; Sederberg et al., 2008) to the data. The Temporal Context

Model is a computational model that implements the core mechanisms of Retrieved

Context Theory, including context drift, association formation, and context reinstatement.

Although we fit one specific implementation of Retrieved Context Theory, the core

predictions made by this theory are consistent across implementations. Here, we give a

conceptual overview of the model; for a full formal description, see Appendix A.

Model description. In the Temporal Context Model, two representational layers

interact during encoding and recall: the feature layer and the context layer. Nodes on the

feature layer represent individual items. For example, if a subject is presented with the

word river, the node representing river will be activated on the feature layer. Once river

has been activated, it in turn activates its existing semantic and episodic associations. For

example, viewing river may activate thoughts of the sound of a river, the experience of

walking on a riverbank, or the fact that people often go fishing on a river. This set of

river-related thoughts, which we call context, is represented as an element on the context

layer. The first panel of Figure 3 illustrates the activation of river on the feature layer and

the resulting activation on the context layer.

When the next word, money, is presented, its feature representation will become

active and completely replace the representation of river on the feature layer (the second

panel of Figure 3). That is, feature representations are active on the feature layer only

while that item is being presented. Once money’s feature representation is activated, it in

turn activates the context associated with money on the context layer.

Critically, when money appears some of the semantic context of river remains active.

The context representations of both river and money blend on the context layer, producing
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a new state of context—this is context drift. Drift is illustrated in the second panel of

Figure 3, where the context representations for both river and money are active on the

context layer. The image of river is slightly smaller than it was in panel 1 to represent that

as each new word is encoded, earlier representations on the context layer gradually fade. In

this way, the context layer serves as a recency-weighted record of the items that have been

presented, such that recent items are more strongly represented than earlier items. That is,

the context layer carries information about past items and their serial order.

Under the model, episodic memories are formed by creating associations between the

feature layer representation of each presented item and the state of the context layer that

prevailed when the item was first presented. In most implementations, the formation of

these new associations between the item and current mental context occurs before an item

activates its context representation (for a discussion, see Sederberg et al., 2008). To

continue with our example, when the next word, cookie, is presented, the cookie feature

representation forms a new associations to the current mental context, which contains

elements of both money and river. Then, cookie activates its element on the context layer.

The third panel of Figure 3 displays the state of the model after cookie′s context

representation has been activated.

To model distractor tasks, each distractor period is given its own representation of

the context and feature layers. When distractor tasks are presented, they cause context to

drift just like a study item, albeit at a different rate (see Appendix A for details). The

result is that the context evoked by the previously-studied items fades more than it would

without the distractor.

At recall, the current mental context is used as a cue for recalling items. When recall

begins, the current state of context is most similar to the contexts associated with items

near the end of the list, so the current context provides a strong cue for items at the end of

the list. Thus, end-of-list items are typically recalled first. As discussed in the

Introduction, this will naturally produce a (small) TCE.
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But the similarity of the end-of-list context to end-of-list items is not the only model

mechanism that produces a TCE: once an item is successfully recalled, its associated

context is brought to mind, or reinstated. For example, recalling cookie would reinstate the

cookie context and also the river-money context that was active when cookie was encoded.

This reinstated context is then integrated with the current context, causing context to drift

in the same manner as during encoding. The newly updated context is then used to cue

the next recall. The TCE arises because the reinstated context is a strong cue for items

originally studied nearby in time to the just-recalled item. For example, the river-money

context reinstated by recalling cookie is a strong cue for recalling money. Thus, under

Retrieved Context Theory, the TCE results largely from context reinstatement.

Simulation methods. This framework predicts that a significant TCE will occur

under incidental encoding because context drift during encoding and reinstatement during

recall are both integral to episodic memory formation. It also predicts that overall recall

will tend to be lower when the TCE is small because both depend on reinstatement. Thus,

it is unclear if the framework’s predictions will hold for the incidental conditions, in which

the TCE is small but overall recall is nevertheless substantial. We attempted to fit the

model to both the SPC and lag-CRP of each of the four conditions to test the model’s, and

thus Retrieved Context Theory’s, compatibility with this pattern. For details on our

methods for model fitting and a table of best-fit parameter values, see Appendix A.

Simulation results. Simulated data from the best-fitting parameter set for DFR

are presented in Figure 4A; best-fit simulated data for CDFR are presented in Figure 4B.

The model was able to simultaneously fit the general pattern of recalls and temporal

contiguity in each condition. In the model simulations, overall levels of recall are greater in
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the intentional conditions compared to the incidental conditions, just as in the data.4

Similarly, the simulated lag-CRPs show evidence of a TCE in all conditions but with a

flatter curve for the incidental conditions, especially in the forward direction. This pattern

matches that observed in the data. Most critically, in the incidental conditions, the model

was able to simultaneously produce relatively high recall and a relatively small TCE.

An obvious next step is to investigate which model parameters account for the

differences across conditions. Table A1 shows the mean parameter values for each

condition. Many parameter values differ significantly between conditions: 6 out of 10

parameters differ between incidental and intentional encoding across distractor conditions

(additional parameters differ for only one distractor condition). Many of these differences

align with the core mechanisms of Retrieved Context Theory. For example, βenc, which

contributes to the size of the recency effect, among other things, is highest in the incidental

CDFR condition. This is consistent with the steeper recency effect in this condition. In

contrast, βrec, which controls context drift during recall (i.e., reinstatement), is lower in the

incidental conditions; when βrec is lower, there is less contiguity, consistent with smaller

TCE in the incidental conditions. We stress that these are not the only parameters that

differ across conditions—the question of which model processes account for the difference

between intentional and incidental encoding defies a simple summary. It is perhaps

unsurprising that expecting a memory test changes many aspects of both encoding and

recall. We will further investigate the necessity of specific parameters in later sections.

In sum, these model fits show Retrieved Context Theory is consistent with the

4 Although we did not fit the model directly to probability of first recall (PFR), a valid question is whether
the model would be able to fit to this measure of recall initiation. In past work, a similar model was unable
to fit both the primacy and recency in PFR curves (Sederberg et al., 2008). We suggest this may stem from
a difficulty in fitting the average compared to fitting individual subjects. A single subject rarely displays
the pattern we see in the PFR average, where there is some primacy but also some recency; rather, they
tend to display either recency or primacy, not both (Healey & Kahana, 2014). In the current manuscript,
we did not fit the model to the recalls of individual subjects because of the nature of an incidental encoding
study. Since each subject could contribute only one list of data, there is a great deal of variability at the
individual level, which does not facilitate precise model fitting. But in Healey and Kahana (2014), subjects
completed many lists, and thus it was possible to fit a Retrieved Context Theory model directly to PFR.
Their model was able to fit to recall initiation of individual subjects in an immediate free recall task.
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patterns in both overall recall and temporal contiguity in incidental encoding. But

questions remain: Is the TCE in subjects’ recalls a result of the same recency and

reinstatement mechanisms specified in Retrieved Context Theory? Is the model fit

quantitatively acceptable in addition to capturing the general shape of the data? We will

answer these questions in the next sections.

Does context reinstatement occur under incidental encoding?

We have addressed the first two criteria for evaluating Retrieved Context Theory:

there is a TCE under incidental encoding which is not limited to short timescales, and the

model is able to qualitatively fit both overall recall and temporal contiguity in all

conditions. However, as described previously, there are two mechanisms specified by

Retrieved Context Theory that work together during recall to generate the TCE: recency

and context reinstatement. The context reinstatement mechanism distinguishes Retrieved

Context Theory from other models of episodic memory. Yet, it is unclear if reinstatement

actually contributes to the TCE in incidental encoding. Since incidental subjects showed

more pronounced recency, as well as a reduced TCE, it is possible that the contiguity

observed under incidental encoding is due purely to recency.

We will demonstrate how recency alone can generate a TCE with an example.

Imagine a subject who recalls items from serial positions 10, 11, and 12 from a 12-item list

but has no bias for recalling items in temporal order. That is, there is no mechanism (like

context reinstatement) to create a bias for short-lag transitions over long-lag transitions.

Instead, the subject would output these items in random order (e.g., 10, 12, 11).

Nonetheless, as a result of recalling only the most recent items, only |lag| = 1 or |lag| = 2

transitions are possible. Thus, this subject’s recalls will appear to have a TCE when

measured with lag-CRP: they make near lags more often than far lags by necessity because

far lags are impossible given their recalls. This is directly a result of having recalled only

recent items and is distinct from a mechanism like context reinstatement, where one
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recalled item directly cues other items studied nearby in the list. In other words, this

subject displays a TCE due purely to recency.

To further illustrate, we simulated data from a pure-recency subject using a simple

model. For each simulated list, we decided whether the item from each serial position

would be recalled by randomly drawing from a binomial distribution where the probability

of success was set to the recall probability of the corresponding serial position in the SPC

of the incidental CDFR condition (the condition with the strongest recency effect). This

gave us a set of n items that were recalled from this list. To determine the order in which

the simulated subject recalled these n items, we simply randomly shuffled the items. This

produced a recall sequence with strong recency but where items were recalled

independently of each other. Thus, any contiguity in this simulation is due to the shape of

the SPC, particularly the strong recency effect. The results of these simulations are

presented in Figure 5A. The lag-CRP for the pure-recency model appears to have a TCE,

at least in the backward direction. Indeed, this pure-recency lag-CRP with its steep

negative slope for backward lags and slight positive slope for forward lags is quite similar

to the lag-CRP observed for the incidental conditions in Figure 2.

We can contrast this pure-recency subject with another subject who recalls exactly

the same items but who does have a bias toward recalling those items in temporal order.

For example, they may have first recalled item 12, which cued item 11, which in turn cued

item 10. Again, this subject recalls few items and has a strong recency effect, but they also

show a preference for shorter lags within the lags that are possible given their recalls. Even

though |lag| = 1 and |lag| = 2 were possible, this subject made only transitions of

lag = −1. Like the pure-recency subject, this subject’s lag-CRP would show a TCE, but

one that reflects recency plus an additional bias toward short lags. We simulated data for

this type of “recency-plus” subject with another simple model. The n items recalled for

each list were selected with the same procedure used in the pure-recency model, but they

were output in a non-random order.
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Specifically, the first recall, output i, was selected randomly from among the n items.

For the next recall, output j, we computed the possible lags (j − i) for the i to j transition

and selected the next recall by drawing from a weighted distribution that heavily favored

near lags. To create this distribution all possible |lag| = 1 transitions were given a weight

of 0.9, all |lag| = 2 transitions a weight of 0.6, all |lag| = 3 transitions a weight of 0.4, all

|lag| = 4 transitions a weight of 0.3, and |lag| ≥ 5 transitions a weight of 0.2. The weight

for each possible lag was then converted to a probability by dividing by the sum of the

weights across all possible lags. In other words, there was both a strong recency effect and

a bias for near lags. The lag-CRP for simulated data in Figure 5B displays a TCE with a

steep slope for both backward and forward lags.

Taken together, the pure-recency and recency-plus simulations demonstrate the

lag-CRP cannot conclusively establish whether contiguity is due only to recency. Even in

simulated data with minimal noise, both the pure-recency and the recency-plus models

show a gradient across backward lags. The telltale sign of the recency-only model is that

there is a slight preference for longer forward transitions. In real data, variability could

easily disguise this sign. Therefore, we introduce new measures to test if the TCE observed

in incidental CDFR is generated, at least in part, by additional mechanisms such as

context reinstatement, as predicted by Retrieved Context Theory.

Temporal bias scores. Temporal bias scores measure the level of temporal

contiguity in a set of recalls relative to what would be expected if the same items were

recalled in random order (Uitvlugt & Healey, 2019). As a result, they are able to

disentangle the effects of recency (or other deviations of the SPC from a uniform

distribution, like primacy) and other mechanisms, like context reinstatement. If temporal

bias scores indicate there is no difference between contiguity expected due to chance and

the observed TCE, then any temporal contiguity observed in the lag-CRP must be due to

recency (or other aspects of the SPC). For each lag, temporal bias is calculated by finding

the difference between the number of times a subject actually made a transition of that lag
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and the number of times the subject would be expected to make transitions of that lag if

items were recalled in random order. This expected count is calculated by taking the items

actually recalled by a subject, randomly permuting the order of recalls, and recording

which lags are made within the new permuted order. Repeating this random shuffling

procedure many times provides a distribution of expected lag counts, and we define the

expected count as the average of this distribution. Temporal bias scores can then be

calculated as the difference from chance normalized by chance:

temporal bias = actual count - expected count
expected count (1)

A temporal bias score of zero indicates a lag occurs exactly as often as would be expected

if previous recalls have no influence on the next recall: a subject that recalls items in

random order should have temporal bias scores of zero for all lags. A score above zero for a

given lag indicates the lag occurred more often than expected; there is a positive bias for

this lag. A temporal bias score below zero for a given lag indicates the lag occurred less in

actual recalls than was expected due to chance. A subject with a strong TCE due to a

non-recency mechanism (e.g., context reinstatement) would have positive temporal bias

scores for short lags and negative temporal bias scores for far lags.

Temporal bias curves for our simple pure-recency and recency-plus simulations are

presented in Figure 6 (to illustrate how lag-CRP and temporal bias scores differ in a

standard free recall task, see Appendix B for a comparison in two archival datasets). The

temporal bias scores for the pure-recency model are near zero for all lags, indicating

presentation order has no impact on output order beyond the influence of recency on which

items are recalled. This is consistent with the data generation process: the order of recalls

was indeed chosen randomly. In the recency-plus model, where data were generated with a

bias for near lags, the temporal bias curve shows a clear positive bias for near lags that

decreases for farther |lags|. That is, the temporal bias scores accurately detected that there
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was a TCE above and beyond the influence of recency.

Context reinstatement in the data. Is the TCE observed in our incidental

conditions due to recency alone? The temporal bias curves for the actual data (presented in

Figure 7) provide a clear answer: there is a TCE in all conditions beyond the influence of

recency. In the DFR conditions, the temporal bias scores for the intentional and incidental

groups show a positive bias for near lags and a negative bias for far lags. The groups differ

only at lag = +1, where there is a much stronger positive bias in the intentional condition.

Similarly, in both CDFR conditions there is a positive bias for near lags, with the greatest

bias for lag = +1 in the intentional condition. The incidental CDFR condition displays a

positive bias for backward lags from −1 to −5, and the majority of the forward lags occur

less often than expected. This indicates that although there is a TCE in the incidental

CDFR condition, these subjects also had a bias toward backward lags over forward lags.

To complement temporal bias curves, we can use temporal factor scores to provide a

single-number measure of the size of the TCE. These scores allow for a statistical test for

the presence of the TCE: whether the effect is significantly larger than expected by

chance (Polyn et al., 2009; Sederberg, Gershman, Polyn, & Norman, 2011). These scores

are calculated by taking the absolute value of the lag of each transition made by a subject

and finding its percentile within the distribution of the |lags| that were possible for that

transition: a higher score indicates more temporal contiguity. Typically, a score of 0.5

would indicate no bias. However, temporal factor scores can be compared to a chance level

calculated with the same procedure used in calculating temporal bias scores. The order of

recalls is permuted many times, and a temporal factor score is calculated for each

permuted order (Healey, 2018; Polyn, Erlikhman, & Kahana, 2011). This allows us to

correct for the effects of recency. A temporal factor score above chance indicates a

significant TCE due to mechanisms beyond recency.

Applying temporal factor scores to our simple recency models (second column of

Figure 6) shows they accurately detect that there is no TCE beyond the effects of recency
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in the pure-recency data, but there is a non-recency TCE in the recency-plus data. That is,

temporal factor scores can detect the difference between a TCE due only to recency and

one to which context reinstatement or similar mechanisms also contribute. When applied

to the actual data, temporal factor scores reveal a significant TCE in all conditions: the

second column of Figure 7 shows that temporal factor scores for all groups, including both

incidental groups, are well above chance. In summary, the temporal bias and temporal

factor scores for the incidental conditions indicate that contiguity in incidental encoding is

consistent with the operation of both recency and context reinstatement.

Context reinstatement in Retrieved Context Theory. The Temporal Context

Model was able to fit the lag-CRP, but as demonstrated with the pure-recency and

recency-plus simulations, the lag-CRP analysis does not distinguish between a TCE due to

recency and a TCE due to other mechanisms. Therefore, it is still an open question

whether the model was utilizing the core mechanisms of context drift and context

reinstatement in generating temporal contiguity, as predicted by Retrieved Context

Theory, or if it did so through the use of other mechanisms.

This is a particular concern in incidental encoding where the TCE is smaller and

there is greater recency in subjects’ recalls. These features may make it possible for the

model to match subjects’ level of contiguity using only the recency mechanism or through

flexibility provided by other parameters. Thus, we conducted a series of simulations to

determine if context drift and reinstatement truly are critical to the model’s ability to

account for contiguity in the incidental conditions.

We began by fitting the full version of the model (described in Appendix A) to both

SPCs and temporal bias scores, which measure the TCE once the effects of recency have

been accounted for. We then compared these full model fits to sub-models in which context

drift and context reinstatement were eliminated by setting the parameters that control

these mechanisms to zero. If these restricted models are able to fit the data as well as the

full model, it would indicate that contiguity can be generated in the model through
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flexibility provided by other, theoretically unimportant parameters (e.g., the decision

parameter τ used at recall). If instead a version of the model in which a theoretically

important parameter is restricted to zero produces an inferior fit to the full model, in

which all parameters are allowed to freely vary, this would provide evidence that the

model’s fit is dependent on specific, theoretically important, cognitive mechanisms.

Full model. The Temporal Context Model was fit to SPCs and temporal bias scores

for each incidental condition. The full version of the model provided good fits to both

overall recall and temporal contiguity generated beyond the effects of recency for both the

incidental DFR (Figure 8) and incidental CDFR (Figure 9) conditions. Parameter values

are presented in Table A3. The model was able to capture the temporal bias for near lags,

as well as the general shape of the SPC, for both incidental conditions. The model was also

able to approximate the positive bias for backward lags observed in the incidental CDFR

condition. This indicates that, consistent with the data, the Temporal Context Model can

generate temporal contiguity through both context drift and reinstatement, while still

generating recalls with high levels of recency.

Sub-model 1: eliminating context drift during encoding. The rate of context

drift during encoding is controlled by βenc, which, among other things, contributes to the

size of the recency effect. When βenc is higher, items from the end of the list are more likely

to be recalled first. In contrast, when βenc = 0, context is unable to drift during the

encoding period, and all items form associations with the same state of context; each item

is an equally good cue for all other items. Therefore, we would expect the TCE to be

abolished.

When fitting the sub-model to the DFR condition, we prevented context drift during

encoding by simply setting βenc to zero. For the CDFR condition, however, we must also

consider how the distractor task that intervenes between each item influences drift during

encoding. Any context drift caused by the distractor task between items n and n+ 1 would

cause the two items to be associated with slightly different states of context, allowing a
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TCE to re-emerge. Thus, when fitting the sub-model to the CDFR condition, we set both

βenc and βdistract, which controls the rate of context drift during a distractor task, to be

zero.

The second columns of Figures 8 and 9 show that the model was not able to fit to

temporal bias scores when context drift was eliminated during incidental encoding. In DFR

(second column of Figure 8), there was a nearly flat TCE when βenc = 0. In CDFR, the

model was similarly unable to fit to both the SPC and temporal bias scores at the same

time (second column of Figure 9). See Table A4 for a list of parameter values for this

sub-model fit.

Sub-model 2: eliminating context reinstatement during recall. To

determine if the context reinstatement mechanism is necessary, the βrec parameter can be

set to zero. βrec determines the extent to which a just-recalled item’s context is reinstated

and incorporated into the cue for the next recall; when βrec is lower there tends to be less

contiguity. If βrec = 0, then context does not drift during retrieval, and no context

reinstatement occurs. In principle, the sub-model should be unable to fit the temporal bias

scores; however, if the model is over-flexible, it may be able to produce a reasonable fit

using the remaining mechanisms.

Confirming the importance of context reinstatement, the model produced poor fits

when reinstatement was eliminated, with a nearly flat contiguity effect for both encoding

conditions (see third columns of Figures 8 and 9 for DFR and CDFR, respectively).

Parameter values are presented in Table A5.

The failure of sub-models 1 and 2 to fit the behavioral data indicates context drift is

necessary at both encoding and retrieval. These simulations also address the concern of

over-flexibility. A model of cognitive processes that is over-flexible and can fit any potential

pattern of results is not falsifiable and therefore is not useful as an explanation of human

cognition. The failure of these sub-models demonstrates that the success of the full model

is not due to over-flexibility. That is, the context drift parameters which Retrieved Context



RECALL AFTER INCIDENTAL ENCODING 28

Theory predicts are central to memory formation are, indeed, necessary for model fitting.

Correlations in the Data and Model. Qualitatively, the fit of the Temporal

Context Model to both lag-CRP and temporal bias curves in the data demonstrates that

the patterns of recall and contiguity in each condition are consistent with the predictions of

Retrieved Context Theory. However, we have not yet tested whether the fits are adequate.

We can now do so using the measures of temporal bias. Given that the model must be able

to capture recall and the TCE simultaneously, we asked whether the models’ overall recall

and temporal factor scores (minus chance) fall within the range of these measures in the

real data.

For each condition, Figure 10 shows a 95% confidence ellipse on the joint distribution

of overall recall and temporal factor scores (minus chance) in the actual data.5 For all

conditions, the means of the simulated data, based on the best-fit model to the SPCs and

lag-CRPs for each condition, are plotted as points. For the incidental conditions, we also

plot the means for the full model fits to SPCs and temporal bias scores (as noted above, in

fitting to temporal bias scores, we considered only the theoretically critical incidental

conditions and did not fit the intentional conditions). Note that in all cases, the model was

not fit directly to the measures plotted here; temporal factor scores for the model were

calculated from data that was generated based on best-fit parameters to the SPC and

lag-CRP or temporal bias curves. Nonetheless, the model predictions fall within the

condition’s confidence ellipse for every condition. That is, the model predictions do not

deviate significantly from the data.

Discussion

We tested whether the Temporal Context Model, a specific computational

implementation of Retrieved Context Theory, is compatible with recent findings that the

5 A confidence ellipse is simply a two-dimensional 95% confidence interval based on the variances of the two
measures rotated by the covariance of the two measures. Just as a univariate CI means that 95% of exact
replications would produce a confidence interval that includes the true univariate mean, the confidence
ellipse means that 95% of exact replications would produce an ellipse that includes the bivariate mean.
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TCE is dramatically reduced under incidental encoding. The theory assumes the TCE

results from fundamental properties of episodic memory, such that temporal information is

automatically encoded, and thus predicts a TCE should be observed regardless of encoding

intentionality. We evaluated the ability of the model to account for the patterns observed

in the data based on three criteria: 1) there should be a TCE under incidental encoding at

multiple timescales, 2) the model should be able to simultaneously fit both overall recall

and the TCE, and 3) the nature of the incidental TCE should be consistent with the

contextual dynamics mechanisms proposed by Retrieved Context Theory.

To address the first criterion, we tested for the presence of a TCE under incidental

encoding using lag-CRP curves. A TCE was found in all groups, including when encoding

was incidental and study events were separated by a filled distractor. To address the

second criterion, we fit the Temporal Context Model to both the SPC and lag-CRP curves

for each condition. The model fit was consistent with the data. To address the final

criterion, we developed novel analytical techniques designed to disentangle the influences of

recency and context reinstatement. They demonstrated that mechanisms beyond recency

are involved in generating the TCE in both intentional and incidental encoding, consistent

with the operation of a context reinstatement mechanism, as suggested by Retrieved

Context Theory. Additional model simulations in which the Temporal Context Model was

fit to this new measure of context reinstatement provided evidence that drift during

encoding and context reinstatement at recall are critical components of Retrieved Context

Theory’s ability to account for recall dynamics. In sum, the observed TCE is consistent

with Retrieved Context Theory’s prediction of a significant TCE regardless of encoding

intentionality, timescale, or the magnitude of recency.

Relation to Other Theories

We have argued that our results confirm several key predictions of Retrieved Context

Theory and lend support to the claim that the TCE is generated in part by a context
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reinstatement mechanism. Some mechanisms proposed by other theories would have

difficulty producing a TCE under the conditions of the present experiment, particularly

under incidental encoding in CDFR. For instance, any theory which assumes that the TCE

is a result of deliberate encoding strategies (see Healey, 2018; Healey et al., 2019;

Hintzman, 2016) is unable to explain a TCE of any size under incidental encoding. That is,

control processes alone do not predict a TCE in incidental encoding.

Similarly, binding in a short-term buffer (e.g., Davelaar et al., 2005; Raaijmakers &

Shiffrin, 1981) cannot easily explain a TCE in CDFR because the short-term buffer

account predicts bonds should form between items only when they co-occupy the buffer

(Phillips et al., 1967). A distractor task should fill the buffer between each item

presentation and thus prevent items from co-occupying the buffer and forming temporal

bonds. Thus, work showing a TCE in CDFR has been taken as evidence against the

short-term buffer amount (Howard & Kahana, 1999). Yet, because previous work with

CDFR has used intentional encoding, one could argue that the use of deliberate control

processes limits the effectiveness of the distractor task and allows items from adjacent

serial positions to co-occupy the buffer. For example, the distractor may not be sufficiently

demanding and therefore not fully push previously studied items out of the buffer or

prevent rehearsal. Or even if we assume the distractor is sufficiently demanding and it is

impossible to rehearse during the distractor, a subject may still strategically use part of an

item’s presentation time to rehearse previous items. However, in our study, a TCE was

observed in CDFR when subjects were unaware their memory would be tested and thus

had no reason to engage in such control processes.

Although our findings are consistent with Retrieved Context Theory and seem quite

inconsistent with some proposed contiguity-generating mechanisms, it is important to note

that our findings do not uniquely support Retrieved Context Theory. Other models of

episodic memory may also be able to account for these results. A model with separate

short and long-term memory stores may not be able to account for these findings with a
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short-term buffer mechanism but can nonetheless account for the ubiquity of the TCE if its

implementation of long-term memory includes contextual dynamics similar to those in

Retrieved Context Theory (as many dual-store models do, e.g., Davelaar et al., 2005;

Lehman & Malmberg, 2013; Mensink & Raaijmakers, 1989). Our results simply indicate

that dual-store models’ ability to explain the TCE is not dependent on the short-term

memory store. In addition, models that include a representation of time, such as the

Scale-Independent Memory, Perception, and Learning model (SIMPLE; Brown, Neath, &

Chater, 2007) or a hierarchical chunking mechanism (Farrell, 2012), may be consistent with

the presence of the TCE in both incidental and intentional encoding and the observed

timescale similarity. However, detailed simulations would be required to determine if such

models can quantitatively fit the observed patterns.

Implications for Retrieved Context Theory

Our focus here has been whether the Retrieved Context Theory is compatible with

the nature of the TCE under incidental encoding. Specifically, does the small size of the

TCE falsify the theory’s predictions? We have shown that it does not. A model based on

Retrieved Context Theory was able to simultaneously generate a small TCE and

substantial recall for both short (DFR) and longer (CDFR) timescales. These model fits to

SPCs and lag-CRPs still left open the possibility that only the recency mechanism operates

in recall following incidental encoding and not the context reinstatement mechanism that is

the heart of the theory—this would have severely limited the explanatory scope of

Retrieved Context Theory. We tested this with temporal bias curves and temporal factor

scores, which eliminate the influence of factors such as recency on the TCE, and found that

mechanisms beyond recency are involved in the generation of the TCE in both intentional

and incidental encoding. Moreover, with a series of model fits to temporal bias scores, we

demonstrated that context drift was necessary during encoding and context reinstatement

was necessary during retrieval for the incidental conditions. Overall, our findings suggest
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that the memory system naturally encodes information about temporal order and that

Retrieved Context Theory provides a good description of the nature of that information.

But some open questions remain.

In our simulations, we used a search algorithm to determine how to parameterize the

model for conditions that differed in their level of temporal contiguity. How do subjects

adapt to different task conditions? We suggest that control processes are critical in

determining the degree to which temporal information is encoded and how it influences

recall, perhaps by tuning the parameters of the memory system based on task instructions.

Control processes can increase the TCE. In support of this idea, there is

evidence that subjects who are more likely or more able to engage in control processes

display a greater TCE, with more pronounced forward asymmetry, than other subjects in

typical free recall tasks. Spillers and Unsworth (2011) administered a free recall test to

subjects with high versus low working memory scores and found that subjects with high

working memory scores displayed a larger TCE with greater forward asymmetry than the

low working memory group; this difference was particularly pronounced at lag = +1.

Cognitive aging, which is known to impair cognitive control (Hasher, Lustig, & Zacks,

2007; West, 1996) has a similar effect on the TCE: the TCE is smaller and more symmetric

for older compared to younger subjects (Diamond & Levine, 2019; Healey & Kahana, 2016;

Kahana, Howard, Zaromb, & Wingfield, 2002). Moreover, subjects with clinical conditions

that can impact cognitive control, such as schizophrenia (Polyn et al., 2015; Sahakyan &

Kwapil, 2018) or high trait worry (Pajkossy, Keresztes, & Racsmány, 2017), often have a

reduced TCE compared to controls (for an example of a clinical condition increasing the

TCE, see Gibson, Healey, & Gondoli, 2019).

These patterns of differences in temporal contiguity, particularly for lag = +1,

parallel what we observed here in the incidental encoding conditions, where the TCE was

stronger and the forward asymmetry was more pronounced in the intentional than

incidental encoding conditions. Once the influence of recency in our data was accounted for



RECALL AFTER INCIDENTAL ENCODING 33

using temporal bias scores, the most pronounced difference between the intentional and

incidental conditions was at the lag = +1 (Figure 7). A similarly pronounced difference in

asymmetry is also present in the lag-CRPs of well-practiced subjects from archival data in

Figure B1, where the lag = +1 transitions are much more likely than any other lags.

In all these cases, including the present data, subjects with a greater likelihood of

engaging control processes, either due to task demands or individual differences, displayed

this strong bias for +1 lags. That is, high-control subjects utilize temporal information to a

greater degree and, as a result, display a larger TCE. This is consistent with individual

differences studies that have found a positive correlation between temporal contiguity and

both overall recall and measures of cognitive ability (Healey et al., 2019; Sederberg et al.,

2010; Spillers & Unsworth, 2011). Indeed, there is evidence that both the size of the TCE

and the degree of forward asymmetry account for unique variance in recall ability for recall

of autobiographical memories.

Control processes can also decrease the TCE. However, these studies where

high cognitive control is linked to a strong TCE all involve cases where remembering and

using temporal information facilitates task performance. When remembering temporal

information could actually be detrimental to performance, the relationship between high

cognitive ability and the use of temporal information may be reversed. For example, Osth

and Fox (2019) found the TCE was absent for a paired associate recognition task in which

utilizing temporal information would lead to impaired task performance (but, see Davis et

al., 2008). Here too, individual differences influence the effects of task: Older adults, who

likely have less ability to inhibit the influence of temporal information, do show evidence of

a TCE in a paired associates task (Campbell, Trelle, & Hasher, 2014). In free recall tasks

designed to merely shift subjects’ attention away from utilizing temporal information,

subjects also display a smaller TCE. Hong, Fazio, and Polyn (2019) found that combining

multiple factors that tend to reduce the usefulness of temporal information, such as testing

subjects on a long list with semantic associations, can eliminate the TCE. Similarly, when
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Healey and Uitvlugt (2019) modified free recall instructions to ask subjects to focus on

similarities in meaning between items rather than the order of items during study, they

found the TCE was reduced to near zero. In addition, the correlation between the strength

of the TCE and overall recall was much smaller in standard lists composed of relatively

unrelated words when subjects were instructed to focus on semantic similarities. When

lists were composed of related words, the correlation between recall and the TCE was

actually negative.

We observed a similar pattern in our results: the correlations between recall and the

TCE (see Figure 10) were significantly higher for intentional encoding than for incidental

encoding for DFR (Fisher’s z = 3.95, p < .001) and CDFR (Fisher’s z = 6.75, p < .001). In

both cases, decoupling of recall from temporal contiguity occurred in situations where

subjects were not intentionally using temporally-based control processes.

In summary, when temporal cues are unhelpful or detrimental to performance,

control processes may diminish the TCE, and those with stronger control processing may

display a smaller TCE. However, for tasks where the use of order information tends to

improve performance, subjects with the strongest ability to engage in control processes

typically do utilize temporal information to guide recall, whereas those with impaired

cognitive control make less use of temporal information, resulting in a lower TCE. This

suggests that incorporating control processes into Retrieved Context Theory is an

important next step in theory development.

Conclusions

The results of this study support the Retrieved Context Theory account of episodic

memory and temporal contiguity. Consistent with the predictions of Retrieved Context

Theory, a significant TCE was observed, regardless of encoding intentionality or the

timescale of item presentation. A model based on the theory was able to simultaneously fit

patterns of high overall recall but modest temporal contiguity in the data. Finally, we
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demonstrated that the observed temporal contiguity was not a result of recency alone,

consistent with the theory’s qualitative claim. By fitting constrained sub-models, we

demonstrated that context drift during recall as a result of context reinstatement, as well

as context drift during encoding, are a critical components of memory search. A notable

observation, however, is the difference in the size and shape of the TCE between encoding

conditions. Specifically, subjects in the intentional encoding conditions tended to have a

higher probability of making |lag| = 1 transitions.

The fact that the TCE is larger under intentional encoding may be due in large part

to the use of strategic control processes to tune parameters of the memory system. A

reduced TCE and a decreased correlation between overall recall and the TCE is generally

observed when capacity for engaging in control processes is impaired, such as when

subjects are unaware their memory will be tested, they have cognitive impairments, or they

are instructed to use an alternate strategy. Considering control processes as parameter

tuning mechanism may improve the ability of Retrieved Context Theory to explain a range

of findings.

Open Practices Statement

The data and materials the experiment are available on the Open Science Framework

at https://osf.io/wdhn8/. The experiment was not preregistered.
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A

B

Figure 1 . Probability of first recall (PFR) curves and serial position curves (SPCs) for
intentional versus incidental encoding. (A) Delayed Free Recall. (B) Continual Distractor
Free Recall. Error bars are bootstrapped 95% confidence intervals.
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Figure 2 . Lag-conditional response probability (lag-CRP) curves for intentional versus
incidental encoding in (A) Delayed Free Recall and (B) Continual Distractor Free Recall.
Error bars are bootstrapped 95% confidence intervals.



RECALL AFTER INCIDENTAL ENCODING 38

Time

RIVER

Feature Layer

Context Layer

RIVER

MONEY

Feature Layer

Context Layer

MONEY

COOKIE

Feature Layer

Context Layer

COOKIE

Figure 3 . Visual representation of the encoding period under Retrieved Context Theory.
The identities of items are represented on the feature layer, with one node for each item.
Each item has a corresponding node on the context layer which represents that item’s
contextual associates. When the first item, river, is presented, its node becomes active on
the feature layer, which then activates the river-related node on the context layer. When
the next item, money, is presented, its representation on the feature layer becomes active,
completely replacing the river activation on the feature layer. Next, money-related context
becomes active on the context layer, but it does not entirely replace the river context.
Instead, the river context fades so that the current mental context is a blend of river and
money contexts in which more recent items are more highly activated. The mental context
serves as a recency weighted record of the past. This process repeats when cookie is
presented: its node on the feature layer becomes active, and its context representation is
activated on the context layer, blending with other elements on the context layer to create
a new river-money-cookie context.
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A

B

Figure 4 . Best-fitting simulated serial position curves (SPCs) and lag-conditional response
probability (lag-CRP) curves from the Temporal Context Model. (A) Delayed Free Recall.
(B) Continual Distractor Free Recall.
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A

B

Figure 5 . Simulated serial position curves (SPCs) and lag-conditional response probability
(lag-CRP) curves from (A) the Pure-Recency model, where recall order was randomly
selected with regard to lag, and (B) the Recency-Plus model, where recall order was
selected with a bias for near lags. For each model we generated recalls for 100,000
simulated subjects, each recalling from 1 list of 12 items.
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B

Figure 6 . Simulated temporal bias curves and temporal factor scores from (A) the
Pure-Recency model, where recall order was randomly selected, and (B) the Recency-Plus
model, where recall order was selected with bias for near lags. For each model, we
generated recalls for 100,000 simulated subjects, each recalling from 1 list of 12 items.
Temporal bias scores were calculated for each lag by counting the number of times a
subject actually made a transition of that lag and the number of times such a transition
was expected by chance. The expected count was determined by permuting the order of
the recalled items 500 times and counting how many times each lag occurred for each
permutation. Temporal bias is the difference between the actual count and average
expected count, divided by the average expected count. The dotted line for the temporal
bias scores indicates a score of zero. Chance for temporal factor scores, represented with
the dotted line, was determined by calculating temporal factor scores for each of 100
random permutations of the order of recalls and getting the average of this distribution.



RECALL AFTER INCIDENTAL ENCODING 42

A

B

Figure 7 . Temporal bias and temporal factor scores for intentional versus incidental
encoding in (A) Delayed Free Recall and (B) Continual Distractor Free Recall. Temporal
bias scores were calculated for each lag by counting the number of times a subject actually
made a transition of that lag and the number of times such a transition would be expected
by chance. The expected count was determined by permuting the order of the recalled
items 500 times and counting how many times each lag occurred for each permutation.
Temporal bias is the difference between the actual count and average expected count,
divided by the average expected count. The dotted line for the temporal bias scores
indicates a score of zero. Chance for temporal factor scores was determined by calculating
temporal factor scores for each of 100 random permutations of the order of recalls and
getting the average of this distribution. Chance temporal factor scores are represented with
a dotted line. Error bars are bootstrapped 95% confidence intervals.
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Delayed Free Recall

Figure 8 . Comparison of Temporal Context Model simulations to the data for the
incidental delayed free recall condition. The top row shows temporal bias curves and the
bottom row shows serial position curves (SPCs). Each column shows the best-fitting
simulated data for each version of the model. In the full model, presented in the first
column, all parameters were allowed to freely vary. In the second column, context drift
during encoding was prevented by setting βenc = 0. In the third column, context drift
during recall was prevented by setting βrec = 0.
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Figure 9 . Comparison of Temporal Context Model simulations to the data for the
incidental continual distractor free recall condition. The top row shows temporal bias
curves and the bottom row shows serial position curves (SPCs). Each column shows the
best-fitting simulated data for each version of the model. In the full model, presented in
the first column, all parameters were allowed to freely vary. In the second column, context
drift during the encoding period was prevented by setting βenc and βdistract = 0. In the
third column, context drift during recall was prevented by setting βrec = 0.
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Figure 10 . The model fits both overall recall and temporal contiguity in each condition.
For the actual data we show 95% confidence ellipses on the joint distribution of overall
recall and temporal factor (minus chance). For the model, we show the means of the same
variables from the simulated model data as a point for each condition. The means for the
model fits to the SPCs and lag-CRPs of each condition are presented as filled points. The
means for the model fits to the SPCs and temporal bias scores for the incidental conditions
are presented as unfilled points. Chance for temporal factor scores was determined by
calculating temporal factor scores for each of 100 random permutations of the order of
recalls and getting the average of this distribution. The r value above each ellipse is the
Pearson correlation between recall probability and the temporal factor − chance scores for
that condition; * indicates that the correlation is significant at α < 0.05.
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Appendix A

Model Details

There are many models based on Retrieved Context Theory (e.g., Healey & Kahana, 2016;

Howard & Kahana, 2002; Lohnas et al., 2015; Polyn et al., 2009; Sederberg et al., 2008).

All share the underlying mechanisms of context drift and reinstatement. Here, we describe

the implementation used in the current manuscript, a version of the Temporal Context

Model (Howard & Kahana, 2002; Sederberg et al., 2008).

Model Structure

In the model, two types of cognitive representations interact: the feature

representation (F ), a high-dimensional space in which the features of the current list item

are activated, and the context representation (C), a corresponding space in which the

current state of context is activated. Activation of specific items or contexts within each of

these representational spaces is defined as a vector, (f) and (c) respectively. These vectors

have one element for each list item (12 items for the current study), one element for each

delay period (1 for the DFR and 12 for the CDFR conditions), and one element to

represent the sate of context prior to presentation of the first item.

Each association matrix is a weighted sum of a pre-experimental component (MFC
pre

and MCF
pre ) that reflects longstanding semantic relationships and an experimental

component (MFC
exp and MCF

exp ) that reflects new learning that occurs during the experiment.

Because we were not interested in studying semantic associations here and because the lists

were generated randomly without consideration of semantics, we followed the practice of

previous work and initialized MFC
pre and MCF

pre as identity matrices (i.e., items are associated

only with their own context element and vise versa).
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Encoding

Studying an item from serial position i activates the corresponding features, fi, which

in turn retrieve the context states to which those features have previously been associated:

cIN
i = MFCfi

||MFCfi||
. (2)

This retrieved context, cIN
i , which is normalized to have a length of 1, is incorporated into

the context representation by adding it to the current context vector ci−1. The context

vector is continuously maintained at unit length. Therefore, when a new state of context is

added to the existing state, the two vectors, ci−1 and cIN
i must be scaled so their sum has a

length of one:

ci = ρici−1 + βcIN
i . (3)

Where β is a model parameter governing how quickly context changes, and ρi is chosen

such that ||ci|| = 1:

ρi =
√

1 + β2[(ci−1 · cIN
i )2 − 1]− β(ci−1 · cIN

i ). (4)

Because context is always of unit length it can be thought of as point on the surface of a

(hyper) sphere, with β determining how far along the surface of the sphere it travels with

each newly presented item and cIN
i determining the direction of travel. During encoding, β

is set to an encoding-specific value, βenc

At the start of an experimental session, the experimental associations are initialized

to zero. As each new item is presented, new experimental associations are formed, both

between the item’s feature representation and the current state of context (stored in MFC
exp )

and between the current state of context and the item’s feature representation (stored in
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MCF
exp ). These associations are formed according to a Hebbian outer-product learning rule:

∆MFC
exp = ci−1f>i (5)

∆MCF
exp = fic>i−1φi,

φi simulates increased attention to beginning-of-list items, producing a primacy effect, by

scaling the magnitude of context-to-feature associations across the list:

φi = φse
−φd(i−1) + 1, (6)

where φs and φd are model parameters. See Sederberg et al. (2008) for a more complete

discussion.

Newly formed experimental associations are incorporated with pre-experimental

associations. The balance between new and existing associations is controlled by

parameters γFC and γCF :

MFC = (1− γFC)MFC
pre + γFCM

FC
exp (7)

MCF = (1− γCF )MCF
pre + γCFM

CF
exp .

For any distractor, whether it occurs between items or at the end of the list, the

context is updated in the same way context was updated during encoding (Equation 4),

but with a different drift rate parameter, βdistract.

Recall

The recall period proceeds as a series of retrieval attempts closely following the

implementation used by Morton and Polyn (2016). At each retrieval attempt, the model

either successfully retrieves an item or fails. After a failure, no further retrieval attempts

are made. The probability of failing to retrieve an item (i.e., stopping recall) starts out low
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for the first recall attempt (i.e., output position) and increases exponentially with each

output position:

P (stop, j) = θse
jθr . (8)

Where j is the output position, θs is a parameter which determines the scaling of the

exponential function, and θr is a parameter which controls the rate at which the

probability of stopping approaches 1.

If recall does not stop at a particular output position, the current contextual state is

used to cue retrieval via the MCF associations:

a = MCFct, (9)

The resulting a gives the degree of support, or activation, for each item in the list. These

activations are then used to assign each item a probability of being selected for recall

according to:

P (i) = (1− P (stop)) aτi∑N
k aτk

, (10)

where τ is a parameter that determines how sensitive the model is to differences among

items in level of support—when τ is large, the model strongly prefers the item with the

highest activation on a; when it is small, less well-supported items have a greater chance of

wining. In computing P (i), each element of a is set to a minimum value of 10−7 to ensure

no item is assigned a zero recall probability.

The recalled item’s representation is reactivated on the feature layer, allowing the

model to retrieve the contextual state associated with the item. Context is updated using

the same mechanism used during the study period (separate parameters, βenc, βdistract, and

βrec control the rate of context drift during encoding, the distractor task, and retrieval).

This updated context is then used as a cue for the next recall. The cycle of

cue-recall-update context-cue continues until the model fails to recall an item (Equation 8).

To fit the model for a given condition, we attempted to minimize the
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root-mean-square deviation (RMSD) between the condition’s across-subject average in the

actual data and the model’s simulated data. There were k = 10 free parameters in this

model. At each generation, 3,000 simulated subjects, each with a different set of parameter

values, studied and recalled three lists. We ran this entire procedure 30 times for each

condition. The best fitting parameter values and the RMSD values across the 30 model fits

for each condition are listed in Table A1. The average parameter values and SEM across

the 30 model fits are presented in Table A2. To generate simulated data for the figures, we

used the best-fitting parameter sets to simulate recalls for 60,000 simulated subjects per

condition (each studying one list).

Table A1
Best-fit parameter values for the fits of the Temporal Context Model to the data of each
condition. The model was simultaneously fit to the Serial Position Curve and
lag-Conditional Response Probability curve.

Parameter Intentional DFR Incidental DFR Intentional CDFR Incidental CDFR
φs 9.521 6.325 8.989 10.854
φd 1.024 5.384 0.872 4.818
γfc 0.158 0.093 0.291 0.988
γcf 0.569 0.288 0.775 0.814
βenc 0.860 0.944 0.769 0.945
βrec 0.814 0.316 0.319 0.010
βdistract 0.367 0.192 0.435 0.701
θs 0.402 0.512 0.408 0.281
θr 0.035 0.009 0.055 0.140
τ 0.193 0.113 0.554 0.220
RMSD 0.0081 0.0097 0.0095 0.0093
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Table A2
Average (SEM) best-fit parameter values for 30 fits of the Temporal Context Model to the
data of each condition. The model was simultaneously fit to the Serial Position Curve and
lag-Conditional Response Probability curve.

Parameter Intentional DFR Incidental DFR Intentional CDFR Incidental CDFR
φs 9.827(0.447) 2.052(0.367) 10.457(0.398) 12.125(0.343)
φd 1.28(0.051) 6.148(0.451) 0.782(0.016) 5.986(0.421)
γfc 0.734(0.009) 0.163(0.017) 0.287(0.020) 0.016(0.002)
γcf 0.464(0.040) 0.420(0.042) 0.479(0.042) 0.563(0.062)
βenc 0.227(0.010) 0.132(0.018) 0.320(0.018) 0.786(0.031)
βrec 0.800(0.025) 0.506(0.033) 0.828(0.024) 0.714(0.031)
βdistract 0.910(0.004) 0.930(0.005) 0.715(0.026) 0.735(0.055)
θs 0.377(0.009) 0.399(0.013) 0.245(0.008) 0.358(0.019)
θr 0.047(0.004) 0.054(0.006) 0.049(0.003) 0.108(0.009)
τ 0.155(0.004) 0.110(0.005) 0.529(0.018) 0.231(0.005)
RMSD 0.0086(0.0301) 0.0101(0.0291) 0.0106(0.0394) 0.0101(0.0444)

Table A3
Best-fit parameter values for the fits of the full Temporal Context Model to the Serial
Position Curve and Temporal Bias Scores of each condition.

Parameter Incidental DFR Incidental CDFR
φs 7.400 13.661
φd 8.311 12.571
γfc 0.529 0.041
γcf 0.614 0.959
βenc 0.139 0.499
βrec 0.393 0.797
βdistract 0.848 0.390
θs 0.436 0.116
θr 0.037 0.210
τ 0.206 0.337
RMSD 0.030 0.0253
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Table A4
Best-fit parameter values for the fits of the Temporal Context Model to the Serial Position
Curve and Temporal Bias Scores of each condition when context drift is eliminated during
encoding. Context drift during encoding was eliminated for Delayed Free Recall by setting
βenc, the parameter which controls the rate of context drift during encoding, to zero. In
Continual Distractor Free Recall, both βdistract and βenc were set to zero to prevent any drift
during or between item presentations.

Parameter Incidental DFR Incidental CDFR
φs 0.157 8.417
φd 1.395 1.953
γfc 0.866 0.670
γcf 0.016 0.022
βenc - -
βrec 0.264 0.163
βdistract 0.084 -
θs 0.119 0.087
θr 0.219 0.294
τ 29.191 23.146
RMSD 0.085 0.177

Table A5
Best-fit parameter values for the fits of the Temporal Context Model to the Serial Position
Curve and Temporal Bias Scores of each condition when context drift is eliminated during
recall by setting βrec = 0.

Parameter Incidental DFR Incidental CDFR
φs 19.460 4.482
φd 5.831 8.339
γfc 0.411 0.571
γcf 0.804 0.302
βenc 0.683 0.723
βrec - -
βdistract 0.917 0.129
θs 0.373 0.442
θr 0.054 0.068
τ 0.209 0.0.603
RMSD 0.0716 0.0616
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Appendix B

Temporal Bias Scores in Archival Datasets

We applied the temporal bias analysis to datasets where a strong TCE has been observed

to show what temporal bias curves look like in data with a typical TCE. In Figure B1, the

lag-CRP and temporal bias curve for two datasets are presented: the list length 15, 2

second presentation rate condition from Murdock (1962) and the Penn Electrophysiology of

Encoding and Retrieval Study Experiment 1 (Healey et al., 2019). In both of these

datasets, the subjects were well-practiced and as a result display a typical lag-CRP, with

particularly high scores for lag = +1 and lower scores for farther lags. When subjects are

experienced with a list learning task, they tend to have a stronger TCE (Healey et al.,

2019). As such, it is unsurprising that the datasets represented in Figure B1 display a TCE

that is strong even without the influences of recency, as evidenced by the strong bias for

near lags in temporal bias scores.
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Figure B1 . (A) Lag-CRP and (B) temporal bias curves for two large archival datasets.
The black line represents data from the list length 15, 2 second presentation rate condition
of Murdock (1962). The gray line represents data from Experiment 1 of the Penn
Electrophysiology of Encoding and Retrieval Study (PEERS). Temporal bias scores were
calculated for each lag by counting the number of times a subject actually made a
transition of that lag and the number of times such a transition would be expected by
chance. The expected count was determined by permuting the order of the recalled items
500 times and counting how many times each lag occurred for each permutation. Temporal
bias is the difference between the actual count and average expected count, divided by the
average expected count. The dotted line for the temporal bias scores indicates a score of
zero, where there is no difference between the actual and expected counts. Error bars
indicate to bootstrapped 95% confidence intervals.
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