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A Extremes of the
Contiguity Distribution

Top Half of Participants
Bottom 5 Participants

B Age

Younger Adults
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I argued that temporal contiguity 
supports particular models

• Models that directly encode information about 
temporal distance (e.g., TCM, SIMPLE)
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I left you with some open 
questions

• Does temporal contiguity really emerge outside the lab?

• Evidence is almost exclusively from list learning tasks 
(Moreton & Ward, 2010)

• List have obvious chain-like structure. Could 
encourage subjects to recall items as a chain

• Places claims of universality on shaky ground     
(Hintzman, 2016)



Looking for Temporal 
Contiguity Outside the Lab

• In the weeks following the 2016 presidential election we 
looked for temporal contiguity when people recalled 
details of the election campaign. 
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Looking for Temporal 
Contiguity Outside the Lab

• Election-related news stories are like items in free recall.

• Except not studied one after another in a chain.

• Instead, interwoven with other events separated by 
irregularly spaced intervals of days to months.
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Many Headlines Recalled

• N = 1,051 subjects from Amazon Mechanical Turk

• 7,931 headlines (M = 7.55, SD = 4.82)

• 5,776 transitions (M = 5.50, SD = 4.36)
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“Trump won’t accept the 
results of election”

• ?

“Trump invites Obama’s 
half-brother to third 
debate”

• ?

Lag = ? - ? = 0

Calculating Transition Lags
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A Confound

• Imagine if 9 out of every 10 headlines came from a 
particular day

• There would be many ways to make lag-zero 
transitions, and few ways to make longer transitions

• We’d expect an artificial contiguity effect
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Removing the Confound

• Simulation in which temporal order could not influence 
recall order

• Simulated subjects recalled k headlines by randomly 
sampling from:

• Because each draw from the distribution is independent, all 
links between successive recalls are broken and transition 
lags depend only on headline-clustering
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Near-Lag Transitions More 
Frequent than Chance
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• The difference between the actual and null distributions is 

largest at short lags.

• Zoomed in on these short lags by grouping lags into bins, 
using wider bins for longer lags

• For each bin, used the actual and null distributions to 
calculate a temporal bias score:
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A Bias Toward Near-Lags
Raw Data
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Another Confound
• Items that are semantically related tend to be 

recalled together (Bousfield, 1953)

• Could produce a peak at near-lags if news stories 
that occur near in time to one another tend to be 
semantically related

• 4+ raters judged the semantic similarity between 
the headlines in each of the 5,776 transitions.
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Removing the Confound
• We statistically removed the effect of similarity from the 

binned temporal bias scores

• Hierarchical regression using semantic similarity for a bin to 
predict the temporal bias score for that bin

• The residuals give the portion of the temporal bias scores 
that cannot be predicted by semantic similarity.
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Even After Removing The 
Influence of Semantics

Raw Data
Semantics Removed
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Does Temporal Contiguity 
Occur Outside the Lab?

• Yes! Even when events are:

• Not deliberately studied

• Not presented in a chain-like list

• Separated by long time scales

• After controlling for clusters of events

• After controlling for semantic associations
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Zero lag transitions
• Different headlines refer to exact same event: 

• “Hillary Clinton Loses the Election” 
• “Donald Trump is New President Elect” 

• Different headlines stemming from one event: 
• E.g., 3rd Presidential Debate 
• “Trump won’t accept the results of election” 
• “Trump invites Obama’s half-brother to third debate” 

• Seemingly unrelated: 
• E.g., October 7, 2016 
• “WikiLeaks posts John Podesta’s e-mails” 
• “Trump’s Access Hollywood video surfaces”
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