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| argued that temporal contiguity
supports particular models

* Models that directly encode information about
temporal distance (e.g. 1cm, sivpLE)
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| left you with some open
guestions

* Does temporal contiguity really emerge outside the lab?

* Evidence is almost exclusively from list learning tasks
(Moreton & Ward, 2010)

* List have obvious chain-like structure. Could
encourage subjects to recall items as a chain

* Places claims of universality on shaky ground
(Hintzman, 2016)



|_ooking for Temporal
Contiguity Outside the Lab

* |n the weeks following the 2016 presidential election we

looked for temporal contiguity when people recalled
details of the election campaign.
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|_ooking for Temporal
Contiguity Outside the Lab

e Election-related news stories are like items in free recall.
* Except not studied one after another in a chain.

* |nstead, interwoven with other events separated by
irregularly spaced intervals of days to months.
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Many Headlines Recalled

* N = 1,051 subjects from Amazon Mechanical Turk
* 7,931 headlines (M = 7.55, SD = 4.82)

e 5 776 transitions (M = 5.50, SD = 4.306)
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“Trump’s Access “FBI re-opens Clinton’s
Hollywood hot mic” e-mail investigation”
* October 7, 2016 » October 28, 2016

Lag =599 - 578 = +21
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Calculating Transition Lags

“Trump won't accept the  “Trump invites Obama’s
results of election” half-brother to third
debate”
Y
o 7/

Lag=7-7=0
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A Confound

* Imagine if 9 out of every 10 headlines came from a
particular day

* There would be many ways to make lag-zero
transitions, and few ways to make longer transitions

 We'd expect an artificial contiguity effect
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Removing the Confouno

e Simulation in which temporal order could not influence
recall order

* Simulated subjects recalled k headlines by randomly
sampling from: i -~

 Because each draw from the distribution is independent, all
iINks between successive recalls are broken and transition
ags depend only on headline-clustering
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| ets zoom In on short-lags

e The difference between the actual and null distributions Is
largest at short lags.

« /Zoomed In on these short lags by grouping lags into bins,
using wider bins for longer lags

e For each bin, used the actual and null distributions to
calculate a temporal bias score:

_ actual count — expected count
Temporal bitas score —

expected count
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Another Confound

* |tems that are semantically related tend to be
recalled together @ousfield, 1953)

* Could produce a peak at near-lags it news stories
that occur near in time to one another tend to be

semantically related

* 4+ raters judged the semantic similarity between
the headlines in each of the 5,776 transitions.
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Lag and semantic similarity
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Lag and semantic similarity
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Removing the Confouno

* We statistically removed the effect of similarity from the
binned temporal bias scores

* Hierarchical regression using semantic similarity for a bin to
oredict the temporal bias score tor that bin

Temporal Bias Score
o o - -

Lag in Days

* The residuals give the portion of the temporal bias scores
that cannot be predicted by semantic similarity.
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Even After Removing The
INnfluence of Semantics
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Does Temporal Contiguity
Occur Outside the Lab?

* Yes! Even when events are:
* Not deliberately studied
 Not presented in a chain-like list
o Separated by long time scales
o After controlling for clusters of events

» After controlling for semantic associations
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/Zero lag transitions

o Different headlines refer to exact same event:
« "Hillary Clinton Loses the Election”
e "Donald Trump is New President Elect”

e Different headlines stemming from one event:
 E.g., 3rd Presidential Debate
 “Trump won't accept the results of election”
e “Trump invites Obama’s half-brother to third debate”

¢ Seemingly unrelated:
 E.g., October 7, 2016
» "WikiLeaks posts John Podesta’s e-mails”
e “Trump’s Access Hollywood video surfaces”
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“Trump gets the White “Hillary Clinton loses in a
House” surprise upset”
 November 8, 2017  November 8, 2017

e Day 611 « Day 611

Lag=611-611=0
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