Incidentally Encoded Temporal Associations Produce Priming in Implicit Memory

Abigail Mundorf, Mitchell Uitvlugt & Karl Healey Michigan State University

Temporal Contiguity Effect (TCE)

 Recalling one item tends to lead to next recalling another item originally experienced nearby in time (Kahana, 1996)

Temporal Contiguity Effect

Temporal Contiguity Effect

Temporal Contiguity Effect (TCE)

- Recalling one item tends to trigger next recalling another item originally experienced nearby in time
- Influence on theories of episodic memory
 - Theories based on strategic control processes (e.g., Hintzman, 2016)
 - Theories emphasizing automatic TCE-generating processes (e.g., Davelaar et al., 2005; Howard & Kahana, 2002; Lehman & Malmberg, 2013)

- Episodic memories form by associating items with the current state of a drifting mental context
 - Associations form **automatically**
 - Mental context drifts as items are processed

- Recall cued by current state of context
 - Once an item is recalled, its associated context is **automatically** reinstated
 - Context is a better cue for items experienced nearby in time

- Recall cued by current state of context
 - Once an item is recalled, its associated context is **automatically** reinstated
 - Context is a better cue for items experienced nearby in time

- Critical Mechanisms:
 - Automatic association formation during encoding
 - Automatic reinstatement of associations during retrieval

Temporal information is **encoded** automatically

Prediction: TCE even when encoding is incidental

Small but significant TCE following incidental encoding

(Diamond & Levine, 2020; Healey, 2018; Mundorf et al. 2021)

- Critical Mechanisms:
 - Automatic association formation during encoding
 - Automatic reinstatement of associations during retrieval

Temporal information is **retrieved** automatically

Prediction: TCE even when retrieval is unintentional

Predictions for Repetition Priming

- <u>Associative repetition priming</u>: repeating one item tends to cue faster responses to other items experienced nearby in time (McKoon & Ratcliff, 1979; 1986)
 - For items explicitly studied as a pair (CUE-TARGET)
- Retrieved Context Theory predicts associative repetition priming
 - Associative repetition priming even for items not explicitly paired together
 - 2. Associative repetition priming affected by the temporal distance between items during initial exposure

Methods

- Participants (N = 602) read 505 words aloud
 - Vocal responses recorded
 - 385 words presented once, 60 words presented twice

Methods

- Participants (*N* = 602) read 505 words aloud
 - Vocal responses recorded
 - 385 words presented once, 60 words presented twice
- Surprise final free recall
- Reading onset

Prediction 1: Associative repetition priming even for items not explicitly paired together

Prediction 2: Associative repetition priming affected by initial lag

Prediction 2: Associative repetition priming affected by initial lag

- Repetition priming for target at all initial lags
- Effect of lag on magnitude of repetition priming effect
 - **Less** repetition priming at initial *lag* = +1

Error bars represent bootstrapped 95% CI

Temporal Information Automatically Retrieved

- Temporal information is both automatically encoded and automatically retrieved
- Generally consistent with Retrieved Context Theory

 Associative repetition priming even for items not explicitly paired together
 Associative repetition priming affected by the temporal distance between items during initial exposure
 - <u>Less</u> repetition priming when Cue and Target experienced in the same order on both presentations

References

- Davelaar, E. J., Goshen-Gottstein, Y., Ashkenazi, A., Haarmann, H. J., & Usher, M. (2005). The demise of short-term memory revisited: Empirical and computational investigations of recency effects. *Psychological Review*, 112(1), 3–42. <u>https://doi.org/10.1037/0033-</u> 295X.112.1.3
- Diamond, N. B., & Levine, B. (2020). Linking detail to temporal structure in naturalistic-event recall. *Psychological Science*, 31(12), 1557–1572. <u>https://doi.org/10.1177/0956797620958651</u>
- Healey, M. K. (2018). Temporal contiguity in incidentally encoded memories. *Journal of Memory and Language*, 102, 28–40. https://doi.org/10.1016/j.jml.2018.04.003
- Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal context. *Journal of Mathematical Psychology*, 46(3), 269–299. https://doi.org/10.1006/jmps.2001.1388
- Kahana, M. J. (1996). Associative retrieval processes in free recall. *Memory & Cognition*, 24(1), 103–109. https://doi.org/10.3758/BF03197276
- Lehman, M., & Malmberg, K. J. (2013). A buffer model of memory encoding and temporal correlations in retrieval. Psychological Review, 120(1), 155–189. https://doi.org/10.1037/a0030851
- Mundorf, A. M. D., Lazarus, L. T. T., Uitvlugt, M. G., & Healey, M. K. (2021). A test of retrieved context theory: Dynamics of recall after incidental encoding. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 47(8), 1264–1287.
 https://doi.org/10.1037/xlmooo1001
- McKoon, G., & Ratcliff, R. (1979). Priming in episodic and semantic memory. *Journal of Verbal Learning and Verbal Behavior*, 18(4), 463–480. <u>https://doi.org/10.1016/s0022-5371(79)90255-x</u>
- McKoon, G., & Ratcliff, R. (1986). Automatic activation of episodic information in a semantic memory task. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 12(1), 108. https://doi.org/10.1037/0278-7393.12.1.108

Results – Explicit Memory

Error bars represent bootstrapped 95% CI

Results – Explicit Memory

Explicit results

Demographics

- 83.4% of full sample included in analyses
 - Excluded for suspecting a memory test
- 78.7% female
- Mean age was 19.7 years (*SD* = 1.9)