

Modeling of Reduced Temporal Contiguity for Distinct Items

Linh T. T. Lazarus

Abigail M. Dester

Mitchell G. Uitvlugt

M. Karl Healey

What is the Temporal Contiguity Effect (TCE)?

- MICHIGAN STATE UNIVERSITY
- In the Temporal Contiguity Effect, recall of one event triggers recall of other events originally experienced nearby in time (Kahana, 1996).
- Retrieved Context Models attribute the TCE to automatic encoding of temporal information (Healey, Long, & Kahana, 2019).
 - Accordingly, Retrieved Context Models naturally predict a TCE whenever new memories are formed.

The TCE has been studied under a variety of experimental conditions

MICHIGAN STATE UNIVERSITY

CBCCLAB

Healey, Long, & Kahana (2019)

Can Retrieved Context Models account for how stimuli manipulations change the size and shape of the TCE?

- Here, we try to model the effect of orthographic distinctiveness using a version of the Temporal Context Model.
- Lists composed of orthographically distinct items dramatically reduce the TCE (McDaniel et al., 2011).

Experiment 1: Methods

Amazon MTurk	Control Items ($n = 152$)	Distinct Items ($n = 161$)			
• <i>N</i> = 313	Orthographically Common	Orthographically Distinct			
Immediate free recall	617				
 3 lists per participant 10 words per list	AMPLIFICATION	AFGHAN			
 Presentation rate: 2 seconds ISI: 1 second 	BISON	FJORDS			
Conditions	ERASER	KHAKI			
 Pure lists of either orthographically common (control) or distinct items 	PARACHUTE	ALFALFA			
Computational Modeling					
 Retrieved Context Model fit using genetic algorithm 	RULER	GNAW			
 Both conditions fit simultaneously, allowing 	CUBE				
specific parameters to vary between conditions	KENNEL				
	REFINEMENT	LYMPH			
	SLEET	CRYPT			
	CEDAR	ASPHYXIATION			

Experiment 1: Results

- Orthographic distinctiveness attenuates, but does not eliminate, the TCE.
- The Retrieved Context framework is able to fit behavioral results.
 - Our best-fitting model assumes that distinctiveness changes context drift rate (β_{enc}) and the balance of pre-experimental vs. experimental context (γ_{FC} and γ_{CF}).

In Experiment 1, words had been presented in uppercase

- McDaniel et al. (2011) presented words in lowercase.
- Previous research suggests that the effect of orthographic distinctiveness may be modulated by letter case (Hunt & Elliot, 1980).
- To study the effect of letter case on the TCE, we presented words in lowercase for Experiment 2.
 - Methods were otherwise identical to those used in Experiment 1.
 - The final analyzed sample size was 250 in the Control condition and 254 in the Distinct condition.

Experiment 2: Results

Recall dynamics for the Lowercase sample displayed similar patterns to the Uppercase sample.

Error bars are bootstrapped 95% confidence intervals

Experiment 2: Results

Replicating Experiment 1:

- Orthographic distinctiveness attenuates
 the TCE, primarily at *lag* = +1.
- The Retrieved Context framework fit lowercase behavioral results.
 - The best-fitting model assumes that distinctiveness changes context drift rate (β_{enc}) and the balance of pre-experimental vs. experimental context (γ_{FC} and γ_{CF}).

Error bars are bootstrapped 99% confidence intervals

- Orthographic distinctiveness appears to reduce temporal contiguity primarily at *lag* = +1.
- Retrieved Context Models are able to simulate the effect of orthographic distinctiveness on the TCE — without the need for additional model mechanisms.
 - Our simulations suggest that orthographic distinctiveness attenuates the TCE by affecting context drift rate (β_{enc}) and the balance of pre-experimental vs. experimental context (γ_{FC} and γ_{CF}) to vary between conditions.

Contact information:

Linh T. T. Lazarus: <u>lazarus6@msu.edu</u> M. Karl Healey: <u>khealey@msu.edu</u> Website: <u>https://cbcc.psy.msu.edu</u>

Healey, M. K., Long, N. M., & Kahana, M. J. (2019). Contiguity in episodic memory. *Psychonomic Bulletin & Review*.

Hunt, R. R., & Elliot, J. M. (1980). The role of nonsemantic information in memory: Orthographic distinctiveness effects on retention. *Journal of Experimental Psychology: General*, 109(1), 49-74.

Kahana, M. J. (1996). Associative retrieval processes in free recall. *Memory & Cognition*, 24(1), 103–109.

McDaniel, M. A., Cahill, M., Bugg, J. M., & Meadow, N. G. (2011). Dissociative effects of orthographic distinctiveness in pure and mixed lists: an item-order account. *Memory & Cognition*, *39*(7), 1162–1173.

Supplemental Slides

Experiment 1: Model Comparisons (SPCs & lag-CRPs)

CBCCLAB

Experiment 1: Model Comparisons

Experiment 1: Model Comparisons

CBCCLAB

MICHIGAN STATE UNIVERSITY

The BICs for sub-models are shown as points with a 99% confidence computed across 10 runs of the model fitting algorithm

		Full Model	Drift	and Association	Drift an	nd Association (simulation 2)	Pı	re Association		Pure Drift	
Parameter	Mean	99%Bootstrap CI	Mean	99%Bootstrap CI	Mean	99% Bootstrap CI	Mean	99%Bootstrap CI	Mean	99%Bootstrap CI	
Control											
eta_{enc}	0.692	[0.672 - 0.714]	0.676	[0.659 – 0.69]	0.664	[0.652 - 0.673]		_	0.741	[0.718 - 0.772]	_
γ_{FC}	0.308	[0.292 - 0.321]	0.318	[0.302 - 0.336]	0.338	[0.325 - 0.353]	0.21	[0.201 - 0.218]		_	
γ_{CF}	0.817	[0.739 - 0.906]	0.855	[0.755 - 0.947]	0.885	[0.846 - 0.932]	0.788	[0.715 - 0.863]		_	
ϕ_s	7.28	[6.33 - 8.15]				_				_	
ϕ_d	1.06	[1.02 - 1.1]		_		_	—		—	_	
β_{rec}	0.862	[0.848 - 0.873]				_				_	
$ heta_s$	0.352	[0.32 - 0.386]		_		_				_	
$ heta_r$	0.0538	[0.0346 - 0.0726]					—		—	_	r
au	1.44	[1.31 - 1.56]		—		—	—			—	1
Distinct											
eta_{enc}	0.669	[0.655 - 0.682]	0.609	[0.593 - 0.622]	0.613	[0.604 - 0.623]	—		0.711	[0.687 - 0.738]	
γ_{FC}	0.428	[0.408 - 0.447]	0.22	[0.204 - 0.236]	0.217	[0.207 - 0.229]	0.273	[0.256 - 0.287]		_	
γ_{CF}	0.882	[0.831 - 0.931]	0.323	[0.291 - 0.356]	0.445	[0.42 - 0.467]	0.368	[0.345 - 0.391]		—	
ϕ_s	5.39	[4.85 - 6.05]				—	—			_	
ϕ_d	0.643	[0.613 - 0.685]				—		_		_	
eta_{rec}	0.473	[0.43 - 0.515]		—		—		_		_	
$ heta_s$	0.378	[0.336 - 0.407]				—	—			_	
$ heta_r$	0.0496	$[0.0321 \hbox{-} 0.0735]$		_		_	—			_	
au	1.59	[1.46 - 1.71]				—				_	
Constrained											sim
eta_{enc}		_				_		_		_	Doc
γ_{FC}		_		_		_	—	_		—	FUS
γ_{CF}		_		_		_		—		—	Co
ϕ_s		_	6.32	[5.83-6.9]	5.14	[4.66-5.62]	8.3	[7.21 - 9.78]	8.38	[6.52 - 10.5]	F
ϕ_d			0.883	[0.848 - 0.914]	0.782	[0.759 - 0.809]	0.99	[0.941 - 1.05]	1.02	[0.947 - 1.08]	
eta_{rec}		_	0.758	[0.736 - 0.778]	0.855	[0.837 - 0.872]	0.783	[0.766 - 0.804]	0.764	[0.737 - 0.789]	
$ heta_s$	—	_	0.355	[0.334 - 0.376]	0.388	[0.341 - 0.431]	0.386	[0.359 - 0.414]	0.356	[0.317 - 0.396]	
$ heta_r$		_	0.0545	[0.0437 - 0.0666]	0.0464	[0.0227 - 0.0734]	0.038	$[0.0239 \hbox{-} 0.0519]$	0.0546	[0.0276 - 0.0771]	
au			1.66	[1.55 - 1.77]	1.53	[1.47-1.6]	1.43	[1.33 - 1.51]	1.16	[1.02-1.3]	

MICHIGAN STATE UNIVERSITY

Best-fit parameter values for model fits

Models were fit simultaneously to Serial Position Curve and lag-Conditional Response Probability curve.