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Abstract
Memory tends to be better when items are processed for their meaning (deep processing) rather than their perceptual features 
(shallow processing). This levels of processing (LOP) effect is well-replicated and has been applied in many settings, but 
the mechanisms involved are still not well understood. The temporal contiguity effect (TCE), the finding that recalling one 
event often triggers recall of another event experienced nearby in time, also predicts memory performance. This effect has 
given rise to several competing theories with specific contiguity-generating mechanisms related to how items are processed. 
Therefore, studying how LOP and the TCE interact may shed light on the mechanisms underlying both effects. However, 
it is unknown how LOP and the TCE interact—various theories make differing predictions. In this preregistered study, we 
tested predictions of three theoretical explanations: accounts which assume temporal information is automatically encoded, 
accounts based on a trade-off between item and order information, and accounts which emphasize the importance of strategic 
control processes. Participants completed an immediate free recall task where they either engaged in deep processing, shallow 
processing, or no additional task while studying each word. Recall and the TCE were highest for no-task lists and greater for 
deep than shallow processing. Our results support theories which assume temporal associations are automatically encoded 
and those which emphasize strategic control processes. Both perspectives should be considered in theory development. 
These findings also suggest temporal information may contribute to better recall under deeper processing with implications 
for determining which situations benefit from deep processing.
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Memory tends to be better for items processed according to 
meaning (deep processing) rather than perceptual features 
(shallow processing). This levels of processing (LOP) 
effect has been consistently observed in both recall and 
recognition regardless of encoding intentionality or specific 
deep processing task (Craik & Tulving, 1975; Eysenck, 
1979; Hyde & Jenkins, 1969; Moscovitch & Craik, 1976; but 
see Rose & Craik, 2012). Extensive work has investigated 
interactions between deep processing and other aspects 
of memory, such as primacy and recency  (Mazuryk & 
Lockhart, 1974) and semantic organization (Einstein & 
Hunt, 1980; Hyde & Jenkins, 1969). The benefits of deep 
processing have inspired recommendations for teaching 

methods, study strategies, and textbook design (Ayçiçegi-
Dinn & Caldwell-Harris, 2009; Biggs, 1978; Martin, 
Brouwers, Cox, & Fedio, 1985; Seiver, Pires, Awan, & 
Thompson, 2019). Yet, the mechanisms through which 
deep processing influences memory are still not well 
understood (Baddeley, 1978; Craik, 2002; Eysenck, 1979).

Another widely-studied phenomenon, the temporal 
contiguity effect (TCE), has been linked to specific 
mechanisms but has not received much attention in the LOP 
literature. The TCE is the finding that recalling one event 
often triggers recall of another event experienced nearby 
in time (Kahana, 1996). Although the size of the effect is 
modulated by various factors, a TCE has been consistently 
observed regardless of task instructions or stimuli 
characteristics (Healey, Long, & Kahana, 2019; Healey & 
Uitvlugt, 2019; Mundorf, Lazarus, Uitvlugt, & Healey, 2021; 
Sadeh, Moran, & Goshen-Gottstein, 2015; but see Osth & 
Fox, 2019). The TCE also predicts memory performance 
(Healey et al., 2019; Sederberg, Miller, Howard, & Kahana, 
2010; Spillers & Unsworth, 2011), at least for intentional 
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encoding of unrelated words (Healey & Uitvlugt, 2019; 
Mundorf et al., 2021). These findings have given rise to 
many models of episodic memory with TCE-generating 
mechanisms (e.g., Davelaar, Goshen-Gottstein, Ashkenazi, 
Haarmann, & Usher, 2005; Farrell, 2012; Howard, Shankar, 
Aue, & Criss, 2015; Lehman & Malmberg, 2013).

Both LOP and the TCE have strongly influenced mem-
ory theory development, and both point to practical ways 
of improving memory. Yet, little work has examined how 
these effects interact. Theories which make the same predic-
tions for summary measures, like overall recall, often make 
divergent predictions for the TCE, making temporal conti-
guity a useful tool for theory testing. Considering these two 
effects together allows us to develop a more unified theory of 
memory that can explain not only each effect independently 
but also how they interact. Below, we outline theoretically 
motivated hypotheses of how LOP might influence the TCE.

Reasons to predict deep processing may 
increase the TCE

Deeper LOP and a larger TCE are both associated with bet-
ter recall. Thus, on purely empirical grounds, a reasonable 
hypothesis is that deeper processing should be associated 
with increased temporal contiguity.

Retrieved context models (Howard & Kahana, 2002; Loh-
nas, Polyn, & Kahana, 2015) provide a theoretical motiva-
tion for this hypothesis. These models assume memories 
form when items become associated with the current state 
of a mental context representation which drifts through a 
high-dimensional representational space. When an item is 
studied, it activates its pre-existing representation (which 
contains the item’s pre-existing associations), the activation 
of previous items’ representations fade, and context drifts 
towards this just-studied item’s representation. In this way, 
items studied nearby in a list become associated with similar 
states of context. When an item is recalled, it reinstates its 
associated context from encoding, providing a cue for items 
originally studied nearby in time. This naturally produces a 
TCE. The size of the TCE depends on how far context drifts 
with each event. If items weakly activate their pre-existing 
contextual representation, context will drift very little; all 
items will form associations with a similar state of context, 
and the TCE will be small. If each item strongly activates its 
pre-existing context, mental context will drift farther toward 
the just-studied item’s representation. Only items studied 
close in time will share similar contexts, enhancing the TCE. 
In this light, deep processing should cause context to drift 
farther than shallow processing because a deep processing 
task involves not only activating items’ perceptual features 
(as shallow processing does) but also deeper semantic fea-
tures (as suggested by Healey & Kahana, 2016).

However, there is another possible interpretation of how 
LOP influence contextual dynamics. These models make 
a distinction between item and context representations. If 
deep processing acts primarily on item representations and 
not context, deeper processing would not increase the TCE. 
Examining the TCE under deep processing will help adju-
dicate between these competing interpretations of retrieved 
context models.

Reasons to predict deep processing may 
decrease the TCE

Other perspectives suggest deep processing should reduce 
the TCE. Under the item-order framework, a prominent 
explanation for memory phenomena like the enactment and 
generation effects (Engelkamp & Zimmer, 1997; Hirshman 
& Bjork, 1988; Nairne, Riegler, & Serram, 1991), recall 
depends on processing information about individual items 
and inter-item associations like temporal order. But there is 
a trade-off: Any manipulation that encourages item-specific 
processing should improve memory for specific items at 
the expense of memory for order. Thus, the TCE should be 
reduced (Lazarus, Mundorf, Uitvlugt, & Healey, in prep; 
McDaniel & Bugg, 2008). For example, McDaniel, Cahill, 
Bugg, and Meadow (2011) found a smaller TCE for lists of 
orthographically distinct items (e.g., khaki, lynx) compared 
to common items (e.g., cookie, ruler) and suggested the 
reduction was due to distinct words requiring more item-
specific processing. Similarly, deeper processing may draw 
more attention to item-specific information (McDaniel & 
Bugg, 2008). The item-order account predicts deep pro-
cessing should lead to better memory for items but reduced 
memory for order.

Finally, LOP may change participants’ encoding strat-
egies. Absent any experimenter-imposed encoding task, 
participants often adopt effective order-based strategies, 
such as linking items together to form a story (Delaney 
& Knowles, 2005; Hintzman, 2016; Unsworth, 2016). By 
encouraging serial recall, such strategies may contribute 
to the TCE (Bouffard, Stokes, Kramer, & Ekstrom, 2018; 
Unsworth, Miller, & Robison, 2019). For participants 
using order-based strategies, any experimenter-imposed 
processing task that encourages focusing on individual 
items should interfere with such strategies, reducing 
recall and the TCE. That is, even if not all participants use 
order-based strategies, the average TCE should be highest 
with no encoding task. One study found deep processing 
reduced recall and the TCE relative to no-task (Long & 
Kahana, 2017), but more work is needed to replicate these 
findings and compare both deep and shallow processing 
to no-task. The impact of encoding tasks on recall, on 
the other hand, likely depends on individual differences in 
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the effectiveness of strategies employed. A task may not 
impair memory if participants are using ineffective strate-
gies. Indeed, several studies report better recall for deep 
processing or no effect of task (Hunt, Smith, & Dunlap, 
2011; Hyde & Jenkins, 1969), while others report deep 
processing impairs memory relative to no-task (Hagen, 
Meacham, & Mesibov, 1970; Mazuryk & Lockhart, 1974).

In sum, there are theoretically motivated reasons to sus-
pect deep processing may increase or decrease the TCE. 
Existing literature lacks information on which hypothesis 
is accurate. Here, we propose to fill this gap.

Methods

The hypotheses, methods, and analysis plan for this study 
were preregistered prior to data collection (https:// osf. io/ 
4abjv/? view_ only= f246b 1d2f3 2d49f 898f4 3e20f b0454 65; 
Healey, Mundorf, & Uitvlugt, 2020).

Participants studied 30 lists of words for free recall: 10 
lists with no encoding task, 10 with a shallow encoding 
task (judging if the letter “T” was in the word), and 10 
with a deep encoding task (judging if the word referred 
to a living thing).

Participants

Participants were Michigan State University undergraduate 
students who completed the experiment for course credit. 
Data collection began in September 2020 when Michigan 
State’s classes were conducted remotely due to COVID-
19. Therefore, all participants completed the study online.

Sample size and stopping rule

As stated in the preregistration, we planned to collect 
data from at least 327 participants. This target sample 
size was selected to provide 95% 1− � power to detect 
a small effect ( d ≥ 0.2 ) via a two-tailed paired-sample 
t-test. We originally had planned to stop data collection 
once the target sample size had been reached or at the end 
of the Fall 2020 semester, whichever came first. How-
ever, COVID-19 created a higher than normal demand 
within our department for online studies to allow students 
to meet course requirements remotely. To help meet this 
demand, we altered our plan and continued to collect data 
for the entire semester even after surpassing the original 
target. The data from existing participants were not exam-
ined prior to making this decision. We collected data from 
825 participants in total.

Data exclusion and final sample

Eight participants were excluded for not meeting our demo-
graphic exclusion criteria: three for reporting English was 
not their first language, four for failing to report their first 
language, and one for indicating they were over 18 at one 
point and under 18 at another point within the same session. 
For the remaining participants, data was excluded for any 
list where they recalled fewer than two list items (measur-
ing the TCE requires at least 2 recalled items) or output 
more than 32 responses (i.e., twice the list length). Any 
participant who had more than 10% of their lists excluded 
(i.e., > 3 out of 30) was completely excluded from analysis. 
In total, we excluded 145 participants. This high exclusion 
rate reflects an overall low average performance in the sam-
ple—we return to possible explanations and implications 
below. Among included participants, a total of 427 lists were 
excluded (71 from deep lists, 278 from shallow lists, and 78 
from no-task lists).

The final sample included 680 participants (82.4% of the 
total sample); 470 were female, and the mean age was 19.6 
( SD = 1.9 ). Participants in the final sample had an average 
of 97.9% of their lists included (SD = 3.1%, Mode = 100%).

Materials

Participants studied 30 lists each composed of 16 words in 
an immediate free recall task. Lists were composed of words 
randomly selected from the pool of 1,638 nouns developed 
for the Penn Electrophysiology of Encoding and Retrieval 
Study (see Healey et al., 2019). Ten of the 30 lists were 
randomly assigned to each of the three conditions. Lists 
were presented in random order with the restriction that no 
more than two lists from the same condition were presented 
successively.

Before studying the first list, participants were given 
instructions explaining each encoding task and the free recall 
test that would follow each list. Full task instructions are 
included on the OSF page for this project. For each word in 
the the deep processing lists, participants were asked “Does 
this word refer to a living thing?”. For the shallow process-
ing lists, they were asked “Does this word contain the letter 
T?”. Participants pressed the Y key for YES or the N key 
for NO while the word was on the screen. For the control 
no-task condition, participants were assigned no encoding 
task, were not required to make any keypress, and were free 
to study the words as they chose.

The letter “T” was chosen as the target letter for the shal-
low processing task in an effort to roughly match the expected 
number of YES responses in the deep processing task. To 
determine how many YES responses would be expected in the 
deep processing task, two undergraduate research assistants 
(i.e., from the same student body as our participants) and one 

https://osf.io/4abjv/?view_only=f246b1d2f32d49f898f43e20fb045465
https://osf.io/4abjv/?view_only=f246b1d2f32d49f898f43e20fb045465
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author (MGU) independently rated each of the words in the 
pool as either living or non-living. The three raters agreed for 
1,425 out of 1,638 words. Some words were more difficult 
to judge than others; for example, the word “chest” might be 
judged as living if it is interpreted as a body part but judged 
as non-living if it is interpreted as a container (like a “treasure 
chest”). For the 213 words where they disagreed, the remain-
ing authors each made a YES/NO judgment and the modal 
judgment across all raters was taken as the expected response. 
For the deep processing task, 36.0% of the 1,638 words had 
an expected YES response. “T” occurs in 36.1% of the words 
in the pool, closer to 36.0% than any other letter.

Procedure

Each trial began with an instruction screen informing the 
participant which encoding task to perform for the upcom-
ing list. To allow participants to take short breaks as needed, 
the instruction screen did not advance until the participant 
pressed SPACE. During the study phase, words were pre-
sented individually in the center of the screen for 1 s fol-
lowed by a 400-600 ms jittered inter-stimulus interval. In 
deep and shallow lists, the relevant question was displayed 
above the word until participants entered a response. Then, 
the prompt disappeared, leaving just the to-be-studied word 
for the remainder of the 1 s presentation period. Following 
the presentation of the final word, participants had 60 s to 
recall as many words from the list as possible in whatever 
order they came to mind. Recall instructions were displayed 
onscreen throughout the recall period. Responses were 
typed individually, and participants were instructed to press 
ENTER after each response to submit it and clear the screen 
for the next response. Once the recall period had elapsed, 
instructions for the next list were presented.

Analyses

A spell-checking algorithm (described in Healey, 2018) 
checked participants’ responses for spelling errors and 
scored their recall accuracy.

Temporal contiguity

We used chance-adjusted temporal factor scores as our pri-
mary measure of the TCE. This analysis considers the lag, 
or distance, in serial positions between successively recalled 
items. For example, if a participant just recalled the item in 
the 3rd serial position on the study list and then recalls the 
item from the 5th serial position, that would be a transition of 
lag = 5 − 3 = +2 . Temporal factor scores are calculated for 
each list by taking the |lag| of each transition made by a par-
ticipant, finding its percentile within the distribution of all 
possible |lags| for that transition (Polyn, Norman, & Kahana, 

2009; Sederberg, Miller, Howard, & Kahana, 2011), and 
then averaging across transitions. This analysis ignores the 
direction of the transition (forward or backward). Transitions 
outside the list boundaries or to previously recalled items are 
not considered possible. For example, lag = +1 would not be 
possible if the just-recalled item was the last item in the list. 
Higher temporal factor scores indicate near-lag transitions 
are more likely than far-lag transitions (i.e., greater tempo-
ral contiguity). To control for primacy, recency, and other 
serial position effects, which may artificially inflate the TCE, 
we compared the actual temporal factor score to the score 
expected if transitions were random with respect to lag (for 
details on these confounds, see Mundorf et al., 2021). We 
calculated this chance-level expected factor score by taking 
the items actually recalled by each participant and permut-
ing the order 500 times, computing a temporal factor score 
for each permutation. Scores are calculated for each list by 
subtracting the average of this chance distribution from the 
actual temporal factor score and dividing by the standard 
deviation of the chance distribution.

We used lag-conditional response probabilities (lag-CRPs) 
and temporal bias scores to help visualize the TCE. Lag-CRPs 
give the probability of making a transition of each lag condi-
tional on the item at that lag being available (for details on 
how CRP is calculated, see Healey et al., 2019). Temporal 
bias scores, introduced by Uitvlugt and Healey (2019), are 
similar to the lag-CRP. However, they remove potential con-
founds from serial position effects in the same way as the 
chance-adjusted temporal factor scores. For this reason, we 
primarily rely on temporal bias and chance-adjusted temporal 
factor scores as measures of the TCE. Temporal bias for a 
given lag is calculated for each participant by counting the 
number of times a transition of that lag was actually made 
(actual count) and the the number of times a transition of that 
lag would be expected to occur if items were recalled in ran-
dom order (expected count; determined through the permuta-
tion test described above). The temporal bias score is simply 
actual count - expected count

expected count
 . Cases where both the actual and 

expected count were zero were treated as missing values. A 
score above zero for a given lag indicates it occurred more 
often than expected by chance, and a score below zero indi-
cates it occurred less than expected.

Semantic contiguity

The analyses of temporal contiguity described above were 
part of a preregistered analysis plan. After conducting those 
analyses, we conducted a set of followup analyses examin-
ing semantic contiguity, or the tendency for words that are 
more strongly semantically related to be recalled together, to 
determine if LOP also affected semantic organization. These 
exploratory analyses were undertaken to address a potential 
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explanation for the small size of the LOP effect on the TCE. 
We measured semantic relatedness between words as the 
cosine of the angle between their high-dimensional vector 
representations in Word Association Space (WAS; Steyvers, 
Shiffrin, & Nelson, 2004). Measuring word relatedness with 
WAS cos(�) allows us to measure even small differences in 
word relatedness, even in our lists composed of randomly 
selected words. To quantify semantic contiguity, we used 
a measure analogous to chance-adjusted temporal factor 
scores. Chance-adjusted semantic factor scores are calcu-
lated in the same way as their temporal counterparts except 
that semantic lags are used instead of temporal lags. For a 
given transition, a semantic lag of 1 means transitioning to 
the most semantically similar available item in the list (in 
terms of cos(�) ), a semantic lag of 2 means transitioning to 
the second most similar available item, and so on.

Results

Preregistered analyses

Overall recall

Probability of recall is displayed in Fig. 1A. Mean recall was 
below 0.4 in every condition, lower than in past research with 
similar participants (e.g., Healey & Uitvlugt, 2019) but not 
unusual for intentional free recall using LOP instructions (e.g., 
Craik & Tulving, 1975; Hunt et al., 2011). Because our pri-
mary analyses involve relative differences among conditions, 
low recall should not impact interpretation of the results.

Planned pairwise tests revealed higher recall for no-task 
( M = 0.368 , SE = 0.005 ) than either deep ( M = 0.316 , 
SE = 0.003 ), t(679) = 15.10 , p < .001 , d = 0.579 , or shal-
low ( M = 0.271 , SE = 0.003 ) processing, t(679) = 28.24 , 
p < .001 , d = 1.083 . This pattern is consistent with past 
work where no-task participants displayed higher recall 
than either deep or shallow processing (Hagen et al., 1970; 
Long & Kahana, 2017; Mazuryk & Lockhart, 1974). We 
also found a LOP effect; recall was higher under deep than 
shallow processing, t(679) = 24.43 , p < .001 , d = 0.937.

Temporal contiguity

Chance-adjusted temporal factor scores were above chance 
in all conditions (Fig. 1B). Planned comparisons revealed a 
greater TCE for no-task ( M = 1.28 , SE = 0.03 ) than deep 
( M = 1.04 , SE = 0.02 ), t(679) = 10.93 , p < .001 , d = 0.419 , 
or shallow ( M = 0.99 , SE = 0.02 ) processing, t(679) = 13.39 , 
p < .001 , d = 0.514 . The TCE was greater for deep than shal-
low processing, t(679) = 2.87 , p = .004 , d = 0.110 , demon-
strating a LOP effect on the TCE. This effect, though signifi-
cant, was small—we return to this issue in the Discussion.

Recall dynamics curves

Although our main focus is overall recall and the TCE, more 
detailed measures of recall dynamics may provide additional 
insight into how LOP influence memory search. Serial posi-
tion curves measure recall as a function of serial position, 
and probability of first recall curves measure which serial 
positions are recalled first (Fig. 2A and B). Recency was 

A CB

Fig. 1  Effects of LOP task on overall recall, temporal contiguity, 
and semantic contiguity. Measures of overall recall, temporal con-
tiguity, and semantic contiguity for all conditions. (A) Probability 
of recall, (B) chance-adjusted temporal factor (TF) scores, and (C) 
chance-adjusted semantic factor (SF) scores for no-task, deep pro-
cessing, and shallow processing lists. For temporal and semantic fac-

tor scores, chance was determined by permuting the order of recalls 
500 times. Scores are calculated for each list by subtracting the aver-
age of the chance distribution from the actual temporal or semantic 
factor score and then dividing by the standard deviation of the chance 
distribution. Error bars are bootstrapped 95% confidence intervals
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pronounced in all conditions, albeit larger for deep and shal-
low processing. Primacy was pronounced only for the no-task 
condition. This pattern is consistent with previous work where 
imposed processing tasks reduced primacy (e.g., Hagen et al., 
1970; Long & Kahana, 2017; Mazuryk & Lockhart, 1974).

Lag-CRPs visualize the TCE as the conditional probability of 
making a transition of a given lag. Lag-CRPs displayed higher 
probabilities for near than far lags for all conditions (Fig. 2C). 
The peak of the curve was largest for no-task and smallest for 
deep processing (cf. temporal factor scores in Fig. 1B). While 
the no-task and shallow conditions exhibited the forward asym-
metry typically associated with the TCE (Healey et al., 2019), 
this asymmetry was attenuated in the deep condition. How-
ever, we urge caution in interpreting these results. Serial posi-
tion effects can introduce a spurious TCE that disguises true 

differences between conditions, particularly when recall or 
primacy/recency differ substantially among conditions (Healey 
et al., 2019; Mundorf et al., 2021; Polyn, Erlikhman, & Kahana, 
2011; Uitvlugt & Healey, 2019), as they do here.

We can illustrate this spurious TCE by simulating data 
where items are recalled with no true TCE. We simulated 
recalls for 100,000 participants for each condition. The prob-
ability of recalling each item was set to the recall probability 
of the corresponding position in that condition’s serial posi-
tion curve. This resulted in n items recalled for each simu-
lated participant. To simulate data with no contiguity, we 
simply randomly shuffled the items’ output order. Yet, the 
lag-CRPs (Fig. 3B), still display a TCE with forward asym-
metry. These lag-CRPs are heavily influenced by recency; 
lag = +1 is highest for shallow processing, the condition 

A B

C D

Fig. 2  Effects of LOP task on recall dynamics. (A) Serial posi-
tion curves, (B) probability of first recall curves, (C) lag-conditional 
response probabilities (lag-CRPs), and (D) temporal bias scores for 
no-task, deep processing, and shallow processing lists. Temporal bias 
scores for each lag were calculated by comparing the number of times 
a transition of that lag was actually made to the number of times it 

would be expected to occur by chance. Chance was calculated by per-
muting the order of recalls for each list 500 times and counting on 
average how many times each lag occurred for each permutation. The 
dotted line for the temporal bias scores indicates a score of zero (no 
bias). Error bars are bootstrapped 95% confidence intervals
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with the most recency. In contrast, temporal bias curves 
and chance-adjusted temporal factor scores (Fig. 3C and 
D) accurately display a null TCE for all conditions, making 
them a better tool for comparing across conditions.

Returning to our data, temporal bias scores (Fig. 2D) 
were highest for no-task, particularly at lag = +1 . Forward 
asymmetry was reduced for shallow and completely elimi-
nated for deep processing. Temporal bias scores reveal the 
higher TCE for deep processing (see Fig. 1B) is due to the 
symmetrically high bias for near transitions, which results 

in overall greater temporal contiguity than the asymmetrical 
shallow condition.1

A

C

B

D

Fig. 3  Simulated data with no temporal contiguity. Simulated (A) 
serial position curves (SPCs), (B) lag-conditional response probabilities 
(lag-CRPs), (C) temporal bias curves, and (D) chance-adjusted tempo-
ral factor scores from a model where recall order was randomly selected 
with regard to lag to produce simulated recalls with no temporal conti-
guity. For this simulation we generated recalls for 100,000 simulated 
participants, each recalling from 1 list of 16 items. For each participant, 
we determined which items would be recalled using a  binomial distri-
bution where the probability of the participant recalling an item from a 
given serial position was set to the recall probability of the corresponding 
serial position in that condition’s serial position curve. This resulted in 

n recalled items. Recall order was determined by randomly shuffling the 
n recalled items. Despite the data being generated such that items were 
recalled in random order (with zero temporal contiguity), the lag-CRPs 
display a contiguity effect as an artifact of the recency in the simulated 
SPCs. We present simulated lag-CRPs on a smaller scale here in order to 
better display differences between conditions in this simulated data. Tem-
poral bias curves display a null TCE, consistent with the method of data 
simulation. Chance-adjusted temporal factor scores are also at or near 
zero for all conditions (making them barely visible in this figure)

1 We did not conduct an ANOVA on temporal bias scores because 
recall probability as a function of lag inherently violates the independ-
ence assumption (i.e., making transitions of some lags more often than 
expected by chance entails making transitions of other lags less than 
expected by chance). As such we avoid making claims about interactions 
between lag and condition. However, we can provide a rough estimate of 
the overall TCE by summing scores from lag = −5 to lag = +5 for each 
condition and comparing these summed scores. Summed temporal bias 
scores were higher in deep ( M = 1.96 , SE = .08 ) than shallow process-
ing ( M = 1.58 , SE = .09 ), t(679) = 4.01 , p < .001 , d = 0.154 , consist-
ent with chance-adjusted temporal factor scores.
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Exploratory followup analyses

While there was a significant LOP effect on temporal conti-
guity, the effect was small. One possible explanation for the 
small effect size is that deep processing may also enhance 
semantic contiguity. Deep processing is inherently semantic 
and increases semantic organization, at least in lists with 
a category structure (e.g., Einstein & Hunt, 1980; Koriat 
& Melkman, 1987). However, items can only be recalled 
in one order. When items are presented in random order, 
organizing recalls by semantic similarity inherently reduces 
temporal contiguity. Thus, the LOP effect on the TCE may 
have been attenuated by greater semantic organization in the 
deep condition.

Semantic contiguity

In all conditions, chance-adjusted semantic factor scores 
were small but above chance (Fig. 1C). A repeated meas-
ures ANOVA revealed a significant effect of condition on 
semantic contiguity, F(2, 1358) = 5.21 , p = .006 , �2

G
= .005 . 

Post-hoc tests with a Bonferroni adjusted2 � = .006 revealed 
greater semantic contiguity in the no-task ( M = 0.10 , 
SE = 0.01 ) compared to the shallow condition ( M = 0.05 , 
SE = 0.01 ), t(679) = 3.34 , p = .001 , d = 0.117 . There 
were no differences between no-task and deep ( M = 0.06 , 
SE = 0.01 ), t(679) = 2.55 , p = .011 , or deep and shallow, 
t(679) = 0.61 , p = 0.540.

Individual differences

We examined individual differences in recall, temporal con-
tiguity, and semantic contiguity. Reliabilities for recall and 
the chance adjusted factor scores are reported in Table 1. 
While recall and temporal factor scores were fairly reliable, 
semantic factor scores were quite unreliable in all condi-
tions. Thus, we do not report correlations involving semantic 
contiguity.

The TCE was positively correlated with recall in no-task 
( r(678) = .76 , p < .001 ), deep ( r(678) = .65 , p < .001 ), 
and shallow ( r(678) = .72 , p < .001 ) lists with a Bonfer-
roni adjusted � = .006 , consistent with previous research 
using unrelated items (Mundorf et al., 2021; Sederberg et al., 
2010; Uitvlugt & Healey, 2019).

Discussion

We tested three hypotheses for how levels of processing 
(LOP; deep, shallow, no-task control) should influence the 
temporal contiguity effect (TCE). Our first hypothesis was 
if deeper processing causes context to drift farther, the TCE 
should be greater for deep than shallow processing. Our sec-
ond hypothesis was if deeper processing instead increases 
processing of item information at the expense of order 
information, it should reduce the TCE. Our final hypothesis 
was if the TCE arises from strategic control processes, any 
encoding task should disrupt it, regardless of depth.

We found both recall and the TCE were highest with no 
imposed processing task, were reduced under deep pro-
cessing, and were further reduced under shallow process-
ing. These results are inconsistent with the hypothesis that 
deep processing improves memory for items at the expense 
of memory for order. Instead, they support the hypothesis 
that deeper processing induces more context drift and the 
hypothesis that any imposed encoding task disrupts strategic 
processing. We discuss each hypothesis below.

Item‑order account

Our results are incompatible with the item-order account, 
which assumes any manipulation that draws attention to 
item-specific processing will reduce relational processing. 
If deeper processing enhances item-specific processing 
(Eysenck, 1979; Healey & Kahana, 2016), the TCE should 
be reduced. Yet, deeper processing increased the TCE. For 
the item-order account to be consistent with our results, 

Table 1  Split-half reliability for individual difference variables

Split-half reliability for probability of recall, chance-adjusted tem-
poral factor (TF) scores, and chance-adjusted semantic factor (SF) 
scores are presented here. For each condition, split-half reliability 
was calculated following the methodology of Sederberg et al. (2010). 
For each participant, we stratified their valid lists (where at least 2 
list items were recalled) by condition and then randomly divided the 
participant’s lists into two sets. In cases where the participant had an 
uneven number of valid lists in a given condition due to exclusions, 
we randomly selected which set would contain an additional list 
for that participant. We calculated probability of recall and chance-
adjusted factor scores for each set and correlated the scores for set 1 
with scores for set 2, correcting with the Spearman-Brown predic-
tion formula ( 2�∕[1 + �] ). This procedure was repeated 2,000 times, 
where the lists assigned to each set were randomly chosen for each 
participant in each iteration

Condition Prob. recall Chance-adjusted 
TF scores

Chance-
adjusted SF 
scores

No-task 0.923 0.759 0.072
Deep 0.892 0.628 −0.013
Shallow 0.897 0.671 0.058

2 Adjusted � is .05/9. We conducted nine post-hoc analyses: three 
t-tests for semantic contiguity, three correlations between TCE and 
recall, and three correlations between semantic contiguity and recall.
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major assumptions regarding the relationship between item 
and order information would have to change.

Retrieved context models

Under retrieved context models, items form associations with 
the current state of mental context during study. As each new 
item activates its associated features, the context represen-
tation moves, or drifts, toward those features. Because of 
context drift, items studied nearby in time form associations 
with similar states of context. When an item is recalled, it 
reinstates its associated context from encoding, which serves 
as a good cue for other items studied nearby in time. In this 
way, retrieved context models naturally predict a TCE.

The size of the TCE depends on the distance context 
travels with each item studied. Context travels farther dur-
ing encoding when items strongly activate their pre-existing 
context. If context drifts farther with each item, only items 
studied nearby in time become associated with similar 
contexts, and the TCE is large. Context changes very lit-
tle, however, if items weakly activate their associated con-
text. If context drifts only a short distance, all items form 
associations with similar contexts, reducing the preference 
for recalling nearby items together—the TCE will be small. 
Our finding of a greater TCE for deep than shallow process-
ing is consistent with the hypothesis that deep processing 
should activate more of items’ associated contexts (Healey 
& Kahana, 2016), causing context to drift farther. Notably, 
our results are inconsistent with an alternate version of these 
models where deep processing acts only on the item layer.

Although we framed our hypotheses purely in terms of 
whether the TCE was larger or smaller in deep processing 
and not the size of that difference, it is worth noting the 
observed effect size for the difference in temporal contigu-
ity between deep and shallow processing was much smaller 
( d = .110 ) than we privately expected. A small effect is still 
compatible with retrieved context models, where the change 
in context drift can be large or small, creating a larger or 
smaller TCE. The small effect does, however, suggest that 
large increases in temporal contiguity are not necessary for 
the beneficial effects of deep processing on memory, and 
temporal contiguity is only a part of the LOP puzzle.

Influence of control processes

Our results are also consistent with accounts that assume the TCE 
arises from order-based encoding strategies. In the absence of an 
experimenter-imposed encoding task, participants often adopt 
strategies involving temporal organization (Delaney & Knowles, 
2005; Hintzman, 2016; Unsworth, 2016) which may directly lead 
to a TCE (Bouffard et al., 2018; Unsworth et al., 2019). These 
TCE-generating strategies are often highly effective—the TCE 

is correlated with recall in lists of unrelated words (Healey et al., 
2019; Mundorf et al., 2021; Sederberg et al., 2010; Spillers & 
Unsworth, 2011). This occurred in our data as well: There was a 
strong correlation between recall and the TCE in all conditions, 
larger than in most previous work (smallest r = .66 ; Healey et al., 
2019; Mundorf et al., 2021; Sederberg et al., 2010).

A strategic control processes account predicts that assign-
ing any task during encoding will interfere with order-based 
strategies. Consistent with this prediction, we found recall 
and the TCE were greatest with no task. The strategic con-
trol processes account also predicts that, since order-based 
strategies encourage forward transitions, forward asymmetry 
should be greatest when no task interferes with strategy use. 
Indeed, asymmetry was greatest for the no-task condition.

Differences in strategy use may also provide an explanation 
for differences in asymmetry among the processing condi-
tions. If participants have limited time to study, a more time-
consuming task will leave less time for order-based strategies 
and result in less forward asymmetry compared to a shorter 
task. Thus the reduced forward asymmetry for deep compared 
to shallow processing could be a result of the deep task taking 
longer to complete. Supporting this explanation, participants 
responded more slowly to the deep ( M = .73 s) than the shal-
low ( M = .68 s) processing task, t(644) = 31.44 , p < .001 
(see Supplemental Materials). While retrieved context models 
may be able to explain differences in asymmetry with existing 
mechanisms, the strategic control processes account offers a 
clear explanation for differences in asymmetry. Future work 
should consider how these approaches could be integrated to 
explain how different features of deep tasks, like difficulty or 
specificity, might change strategy use.

Conclusions

Recall and the TCE were higher under deep than shallow 
processing and highest with no encoding task. Retrieved 
context models and a strategic control processes account are 
each consistent with these results. Although theories based 
on context drift and those which emphasize strategy have 
been presented as conflicting explanations (Healey et al., 
2019; Hintzman, 2016), integrating these two accounts pro-
vides the most comprehensive explanation of our results. 
Integrating a strategy account with retrieved context mod-
els will support development of a theory with well-defined 
mechanisms (even for the difficult-to-define strategic control 
processes) that accounts for both automatic and intentional 
processes of memory. Both perspectives should be consid-
ered for furthering theory development and in efforts to uti-
lize LOP to improve memory performance.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13423- 022- 02112-1.

https://doi.org/10.3758/s13423-022-02112-1


 Psychonomic Bulletin & Review

1 3

Acknowledgements We thank G. Carter Brown and Kaitlin Ifkovits for 
help in developing materials and Linh Lazarus for helpful discussions. 
This material is based upon work supported by the National Science 
Foundation under Grant No. 1848972.

Author contributions M. K. Healey developed the study concept. All 
authors contributed to the study design. Data collection was performed 
by M. G. Uitvlugt. A. M. D. Mundorf and M. G. Uitvlugt performed the 
data analysis and interpretation under the supervision of M. K. Healey. 
A. M. D. Mundorf drafted the manuscript, and M. K. Healey and M. 
G. Uitvlugt provided critical revisions. All authors approved the final 
version of the manuscript for submission.

Funding This material is based upon work supported by the National 
Science Foundation under Grant No. 1848972.

Data availability All de-identified data analyzed in this study are avail-
able at https:// osf. io/ 4abjv/? view_ only= f246b 1d2f3 2d49f 898f4 3e20f 
b0454 65.

Code availability All data analysis scripts used in this study are avail-
able at https:// osf. io/ 4abjv/? view_ only= f246b 1d2f3 2d49f 898f4 3e20f 
b0454 65.

Declarations 

Ethics Approval The study procedures and materials were approved 
by the Michigan State University Institutional Review Board. All ele-
ments of this study were performed in line with the principles of the 
Declaration of Helsinki.

Consent to Participate Informed consent was obtained from all indi-
vidual participants included in the study.

Consent for Publication Not applicable.

Conflicts of interest The authors have no relevant financial or non-
financial interests to disclose.

References

Ayçiçegi-Dinn, A., & Caldwell-Harris, C. L. (2009). Emotion-memory 
effects in bilingual speakers: A levels-of-processing approach. 
Bilingualism, 12(3), 291. https:// doi. org/ 10. 1017/ s1366 72890 
99901 25

Baddeley, A. D. (1978). The trouble with levels: A reexamination of 
Craik and Lockhart’s framework for memory research. Psycho-
logical Review, 85(3), 139–152. https:// doi. org/ 10. 1037/ 0033- 
295x. 85.3. 139

Biggs, J. B. (1978). Individual and group differences in study pro-
cesses. British Journal of Educational Psychology, 48(3), 266–
279. https:// doi. org/ 10. 1111/j. 2044- 8279. 1978. tb030 13.x

Bouffard, N., Stokes, J., Kramer, H. J., & Ekstrom, A. D. (2018). Tem-
poral encoding strategies result in boosts to final free recall perfor-
mance comparable to spatial ones. Memory & Cognition, 46(1), 
17–31. https:// doi. org/ 10. 3758/ s13421- 017- 0742-z

Craik, F. I. M. (2002). Levels of processing: Past, present... and future? 
Memory, 10(5–6), 305–318. https:// doi. org/ 10. 1080/ 09658 21024 
40001 35

Craik, F. I. M., & Tulving, E. (1975). Depth of processing and the 
retention of words in episodic memory. Journal of Experimental 
Psychology, 104(3), 268–294. https:// doi. org/ 10. 1037/ 0096- 3445. 
104.3. 268

Davelaar, E. J., Goshen-Gottstein, Y., Ashkenazi, A., Haarmann, H. J., 
& Usher, M. (2005). The demise of short-term memory revisited: 
Empirical and computational investigations of recency effects. 
Psychological Review, 112(1), 3–42. https:// doi. org/ 10. 1037/ 
0033- 295X. 112.1.3

Delaney, P. F., & Knowles, M. E. (2005). Encoding strategy changes 
and spacing effects in the free recall of unmixed lists. Journal of 
Memory and Language, 52(1), 120–130. https:// doi. org/ 10. 1016/j. 
jml. 2004. 09. 002

Einstein, G. O., & Hunt, R. R. (1980). Levels of processing and organi-
zation: Additive effects of individual-item and relational process-
ing. Journal of Experimental Psychology: Human Learning & 
Memory, 6(5), 588–598. https:// doi. org/ 10. 1037/ 0278- 7393.6. 5. 
588

Engelkamp, J., & Zimmer, H. D. (1997). Sensory factors in memory for 
subject-performed tasks. Acta Psychologica, 96(1), 43–60. https:// 
doi. org/ 10. 1016/ s0001- 6918(97) 00005-x

Eysenck, M.W. (1979). Levels of processing in human memory. In 
F.I.M. Cermak, Craik, L.S (Eds.), (pp. 89–118). Psychology Press

Farrell, S. (2012). Temporal clustering and sequencing in short-term 
memory and episodic memory. Psychological Review, 119(2), 
223–271. https:// doi. org/ 10. 1037/ a0027 371

Hagen, J. W., Meacham, J. A., & Mesibov, G. (1970). Verbal labeling, 
rehearsal, and short-term memory. Cognitive Psychology, 1(1), 
47–58. https:// doi. org/ 10. 1016/ 0010- 0285(70) 90004-6

Healey, M. K. (2018). Temporal contiguity in incidentally encoded 
memories. Journal of Memory and Language, 102, 28–40. https:// 
doi. org/ 10. 1016/j. jml. 2018. 04. 003.

Healey, M. K., & Kahana, M. J. (2016). A four-component model 
of age-related memory change. Psychological Review, 123(1), 
23–69. https:// doi. org/ 10. 1037/ rev00 00015

Healey, M. K., Long, N. M., & Kahana, M. J. (2019). Contiguity in epi-
sodic memory. Psychonomic Bulletin & Review, 26(3), 699–720. 
https:// doi. org/ 10. 3758/ s13423- 018- 1537-3

Healey, M.K., Mundorf, A.M. D., & Uitvlugt, M. G. (2020). Does 
depth of processing affect temporal contiguity? Retrieved from 
https:// osf. io/ gkcm7

Healey, M. K., & Uitvlugt, M. G. (2019). The role of control processes 
in temporal and semantic contiguity. Memory & Cognition, 47, 
719–737. https:// doi. org/ 10. 3758/ s13421- 019- 00895-8

Hintzman, D. L. (2016). Is memory organized by temporal contiguity? 
Memory & Cognition, 44(3), 365–375. https:// doi. org/ 10. 3758/ 
s13421- 015- 0573-8

Hirshman, E., & Bjork, R. A. (1988). The generation effect: Support for 
a two-factor theory. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 14(3), 484–494. https:// doi. org/ 10. 
1037/ 0278- 7393. 14.3. 484

Howard, M. W., & Kahana, M. J. (2002). When does semantic simi-
larity help episodic retrieval? Journal of Memory and Language, 
46(3), 85–98. https:// doi. org/ 10. 1006/ jmla. 2001. 2798

Howard, M. W., Shankar, K. H., Aue, W. R., & Criss, A. H. (2015). A 
distributed representation of internal time. Psychological Review, 
122(1), 24–53. https:// doi. org/ 10. 1037/ a0037 840

Hunt, R. R., Smith, R. E., & Dunlap, K. R. (2011). How does distinc-
tive processing reduce false recall? Journal of Memory and Lan-
guage, 65(4), 378–389. https:// doi. org/ 10. 1016/j. jml. 2011. 06. 003

Hyde, T. S., & Jenkins, J. J. (1969). Differential effects of incidental 
tasks on the organization of recall of a list of highly associated 
words. Journal of Experimental Psychology, 82(3), 472–481. 
https:// doi. org/ 10. 1037/ h0028 372

https://osf.io/4abjv/?view_only=f246b1d2f32d49f898f43e20fb045465.
https://osf.io/4abjv/?view_only=f246b1d2f32d49f898f43e20fb045465.
https://osf.io/4abjv/?view_only=f246b1d2f32d49f898f43e20fb045465.
https://osf.io/4abjv/?view_only=f246b1d2f32d49f898f43e20fb045465.
https://doi.org/10.1017/s1366728909990125
https://doi.org/10.1017/s1366728909990125
https://doi.org/10.1037/0033-295x.85.3.139
https://doi.org/10.1037/0033-295x.85.3.139
https://doi.org/10.1111/j.2044-8279.1978.tb03013.x
https://doi.org/10.3758/s13421-017-0742-z
https://doi.org/10.1080/09658210244000135
https://doi.org/10.1080/09658210244000135
https://doi.org/10.1037/0096-3445.104.3.268
https://doi.org/10.1037/0096-3445.104.3.268
https://doi.org/10.1037/0033-295X.112.1.3
https://doi.org/10.1037/0033-295X.112.1.3
https://doi.org/10.1016/j.jml.2004.09.002
https://doi.org/10.1016/j.jml.2004.09.002
https://doi.org/10.1037/0278-7393.6.5.588
https://doi.org/10.1037/0278-7393.6.5.588
https://doi.org/10.1016/s0001-6918(97)00005-x
https://doi.org/10.1016/s0001-6918(97)00005-x
https://doi.org/10.1037/a0027371
https://doi.org/10.1016/0010-0285(70)90004-6
https://doi.org/10.1016/j.jml.2018.04.003
https://doi.org/10.1016/j.jml.2018.04.003
https://doi.org/10.1037/rev0000015
https://doi.org/10.3758/s13423-018-1537-3
https://osf.io/gkcm7
https://doi.org/10.3758/s13421-019-00895-8
https://doi.org/10.3758/s13421-015-0573-8
https://doi.org/10.3758/s13421-015-0573-8
https://doi.org/10.1037/0278-7393.14.3.484
https://doi.org/10.1037/0278-7393.14.3.484
https://doi.org/10.1006/jmla.2001.2798
https://doi.org/10.1037/a0037840
https://doi.org/10.1016/j.jml.2011.06.003
https://doi.org/10.1037/h0028372


Psychonomic Bulletin & Review 

1 3

Kahana, M. J. (1996). Associative retrieval processes in free recall. 
Memory & Cognition, 24(1), 103–109. https:// doi. org/ 10. 3758/ 
BF031 97276

Koriat, A., & Melkman, R. (1987). Depth of processing and memory 
organization. Psychological Research, 49(2–3), 173–181. https:// 
doi. org/ 10. 1007/ BF003 08684

Lazarus, L. T., Mundorf, A. M. D., Uitvlugt, M. G., & Healey, M. K. 
(in prep). An item-order model of reduced temporal contiguity for 
distinct items. Manuscript submitted for publication.

Lehman, M., & Malmberg, K. J. (2013). A buffer model of memory 
encoding and temporal correlations in retrieval. Psychological 
Review, 120(1), 155–189. https:// doi. org/ 10. 1037/ a0030 851

Lohnas, L. J., Polyn, S. M., & Kahana, M. J. (2015). Expanding the 
scope of memory search: Intralist and interlist effects in free 
recall. Psychological Review, 122(2), 337–363. https:// doi. org/ 
10. 1037/ a0039 036

Long, N. M., & Kahana, M. J. (2017). Modulation of task demands 
suggests that semantic processing interferes with the formation 
of episodic associations. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 43(2), 167–176. https:// doi. 
org/ 10. 1037/ xlm00 00300

Martin, A., Brouwers, P., Cox, C., & Fedio, P. (1985). On the nature 
of the verbal memory deficit in Alzheimer’s disease. Brain and 
Language, 25(2), 323–341. https:// doi. org/ 10. 1016/ 0093- 934x(85) 
90088-4

Mazuryk, G. F., & Lockhart, R. S. (1974). Negative recency and levels 
of processing in free recall. Canadian Journal of Psychology/
Revue canadienne de psychologie, 28(1), 114–123. https:// doi. 
org/ 10. 1037/ h0081 971

McDaniel, M. A., & Bugg, J. M. (2008). Instability in memory phe-
nomena: A common puzzle and a unifying explanation. Psycho-
nomic Bulletin & Review, 15(2), 237–255. https:// doi. org/ 10. 3758/ 
pbr. 15.2. 237

McDaniel, M. A., Cahill, M., Bugg, J. M., & Meadow, N. G. (2011). 
Dissociative effects of orthographic distinctiveness in pure and 
mixed lists: An item-order account. Memory & Cognition, 39(7), 
1162–1173. https:// doi. org/ 10. 3758/ s13421- 011- 0097-9

Moscovitch, M., & Craik, F. I. M. (1976). Depth of processing, 
retrieval cues, and uniqueness of encoding as factors in recall. 
Journal of Verbal Learning and Verbal Behavior, 15(4), 447–458. 
https:// doi. org/ 10. 1016/ s0022- 5371(76) 90040-2

Mundorf, A. M. D., Lazarus, L. T. T., Uitvlugt, M. G., & Healey, M. 
K. (2021). A test of retrieved context theory: Dynamics of recall 
after incidental encoding. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 47(8), 1264–1287. https:// doi. 
org/ 10. 1037/ xlm00 01001

Nairne, J. S., Riegler, G. L., & Serra, M. (1991). Dissociative effects of 
generation on item and order retention. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 17(4), 702–709. 
https:// doi. org/ 10. 1037/ 0278- 7393. 17.4. 702

Osth, A., & Fox, J. (2019). Are associations formed across word pairs? 
A test of learning by temporal contiguity in associative recogni-
tion. Psychonomic Bulletin & Review, pp. 1–7. https:// doi. org/ 10. 
3758/ s13423- 019- 01616-7

Polyn, S. M., Erlikhman, G., & Kahana, M. J. (2011). Semantic cuing 
and the scale-insensitivity of recency and contiguity. Journal of 
Experimental Psychology: Learning, Memory and Cognition, 
37(3), 766–775. https:// doi. org/ 10. 1037/ a0022 475

Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009). A context main-
tenance and retrieval model of organizational processes in free 
recall. Psychological Review, 116(1), 129–156. https:// doi. org/ 
10. 1037/ a0014 420

Rose, N. S., & Craik, F. I. M. (2012). A processing approach to the 
working memory/long-term memory distinction: Evidence from 
the levels-of-processing span task. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 38(4), 1019–1029. 
https:// doi. org/ 10. 1037/ a0026 976

Sadeh, T., Moran, R., & Goshen-Gottstein, Y. (2015). When items ‘pop 
into mind’: Variability in temporal-context reinstatement in free-
recall. Psychonomic Bulletin & Review, 22(3), 779–790. https:// 
doi. org/ 10. 3758/ s13423- 014- 0746-7

Sederberg, P. B., Gershman, S. J., Polyn, S. M., & Norman, K. A. 
(2011). Human memory reconsolidation can be explained using 
the temporal context model. Psychonomic Bulletin & Review, 
18(3), 455–468. https:// doi. org/ 10. 3758/ s13423- 011- 0086-9

Sederberg, P. B., Miller, J. F., Howard, M. W., & Kahana, M. J. (2010). 
The temporal contiguity effect predicts episodic memory perfor-
mance. Memory & Cognition, 38(6), 689–699. https:// doi. org/ 10. 
3758/ MC. 38.6. 689

Seiver, J. G., Pires, M., Awan, F., & Thompson, W. (2019). Retention 
of word pairs as a function of level of processing, instruction to 
remember, and delay. Journal of Cognitive Psychology, 31(7), 
665–682. https:// doi. org/ 10. 1080/ 20445 911. 2019. 16645 55

Spillers, G. J., & Unsworth, N. (2011). Variation in working mem-
ory capacity and temporal-contextual retrieval from episodic 
memory. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 37(6), 1532–1539. https:// doi. org/ 
10. 1037/ a0024 852

Steyvers, M., Shiffrin, R. M., & Nelson, D. L. (2004). Word associa-
tion spaces for predicting semantic similarity effects in episodic 
memory. In A. F. Healy (Ed.), Cognitive psychology and its appli-
cations: Festschrift in honor of Lyle Bourne, Walter Kintsch, and 
Thomas Landauer. American Psychological Association. https:// 
doi. org/ 10. 1037/ 10895- 018

Uitvlugt, M. G., & Healey, M. K. (2019). Temporal proximity links 
unrelated news events in memory. Psychological Science, 30(1), 
92–104. https:// doi. org/ 10. 1177/ 09567 97618 808474

Unsworth, N. (2016). Working memory capacity and recall from 
long-term memory: Examining the influences of encoding 
strategies, study time allocation, search efficiency, and moni-
toring abilities. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 42(1), 50–61. https:// doi. org/ 10. 
1037/ xlm00 00148

Unsworth, N., Miller, A. L., & Robison, M. K. (2019). Individual dif-
ferences in encoding strategies and free recall dynamics. Quar-
terly Journal of Experimental Psychology, 72(10), 2495–2508. 
https:// doi. org/ 10. 1177/ 17470 21819 847441

Open Practices Statement The hypotheses, methods, and analysis plan 
for this study were preregistered prior to data collection. Details on the 
preregistration and de-identified data along with data analysis scripts 
are available at https:// osf. io/ 4abjv/? view_ only= f246b 1d2f3 2d49f 
898f4 3e20f b0454 65.

https://doi.org/10.3758/BF03197276
https://doi.org/10.3758/BF03197276
https://doi.org/10.1007/BF00308684
https://doi.org/10.1007/BF00308684
https://doi.org/10.1037/a0030851
https://doi.org/10.1037/a0039036
https://doi.org/10.1037/a0039036
https://doi.org/10.1037/xlm0000300
https://doi.org/10.1037/xlm0000300
https://doi.org/10.1016/0093-934x(85)90088-4
https://doi.org/10.1016/0093-934x(85)90088-4
https://doi.org/10.1037/h0081971
https://doi.org/10.1037/h0081971
https://doi.org/10.3758/pbr.15.2.237
https://doi.org/10.3758/pbr.15.2.237
https://doi.org/10.3758/s13421-011-0097-9
https://doi.org/10.1016/s0022-5371(76)90040-2
https://doi.org/10.1037/xlm0001001
https://doi.org/10.1037/xlm0001001
https://doi.org/10.1037/0278-7393.17.4.702
https://doi.org/10.3758/s13423-019-01616-7
https://doi.org/10.3758/s13423-019-01616-7
https://doi.org/10.1037/a0022475
https://doi.org/10.1037/a0014420
https://doi.org/10.1037/a0014420
https://doi.org/10.1037/a0026976
https://doi.org/10.3758/s13423-014-0746-7
https://doi.org/10.3758/s13423-014-0746-7
https://doi.org/10.3758/s13423-011-0086-9
https://doi.org/10.3758/MC.38.6.689
https://doi.org/10.3758/MC.38.6.689
https://doi.org/10.1080/20445911.2019.1664555
https://doi.org/10.1037/a0024852
https://doi.org/10.1037/a0024852
https://doi.org/10.1037/10895-018
https://doi.org/10.1037/10895-018
https://doi.org/10.1177/0956797618808474
https://doi.org/10.1037/xlm0000148
https://doi.org/10.1037/xlm0000148
https://doi.org/10.1177/1747021819847441
https://osf.io/4abjv/?view_only=f246b1d2f32d49f898f43e20fb045465.
https://osf.io/4abjv/?view_only=f246b1d2f32d49f898f43e20fb045465.

	Does depth of processing affect temporal contiguity?
	Abstract
	Reasons to predict deep processing may increase the TCE
	Reasons to predict deep processing may decrease the TCE
	Methods
	Participants
	Sample size and stopping rule
	Data exclusion and final sample

	Materials
	Procedure
	Analyses
	Temporal contiguity
	Semantic contiguity


	Results
	Preregistered analyses
	Overall recall
	Temporal contiguity
	Recall dynamics curves

	Exploratory followup analyses
	Semantic contiguity
	Individual differences


	Discussion
	Item-order account
	Retrieved context models
	Influence of control processes
	Conclusions

	Acknowledgements 
	References


