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The temporal contiguity effect (TCE) is the tendency for the recall of one event to cue recall of other
events originally experienced nearby in time. Retrieved context theory proposes that the TCE results
from fundamental properties of episodic memory: binding of events to a drifting context representation
during encoding and the reinstatement of those associations during recall. If these processes are auto-
matic, the TCE should not be dependent on any encoding strategy and should, in fact, be present regard-
less of encoding intentionality. Here, we ask whether this theory is compatible with recent findings that
the TCE is dramatically reduced under incidental encoding, even though memory accuracy is only mod-
estly reduced. We begin by attempting to replicate this finding in a new large-scale study with over
5,000 participants in which we manipulated encoding intentionality between participants in both delayed
free recall and continual distractor free recall. A small, but reliable, TCE was observed in all conditions,
although the effect was dramatically reduced in incidental encoding. In a simulation study, we demon-
strated that retrieved context theory can simultaneously account for both overall recall and the strength
of the TCE in incidental encoding conditions. Additional analyses revealed that the incidental TCE is
not an artifact of theoretically uninteresting factors, such as recency, and is consistent with being gener-
ated by the core contextual dynamics of retrieved context theory.
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Retrieved context theory proposes that all episodic memories
depend on a drifting mental context representation (Howard &
Kahana, 2002). The theory assumes that during encoding new
memories are formed by associating experienced events with the
current state of this context representation. Then, during memory
search, event-to-context associations allow context to serve as a
cue to recall events. Retrieved context theory forms the basis of a
set of models of free recall that provide quantitatively precise
accounts of dynamics of memory search (see Healey & Kahana,
2014, 2016; Howard et al., 2015; Howard & Kahana, 2002; Loh-
nas et al., 2015; Polyn et al., 2009; Sederberg et al., 2008). The
theory has been applied to explain many phenomena, including

the testing effect (Karpicke et al., 2014), directed forgetting
(Sahakyan et al., 2013), retrieval-induced forgetting (Kliegl &
Bäuml, 2016), age-related change (Healey & Kahana, 2020; Wahl-
heim & Huff, 2015), individual differences (Healey et al., 2014;
Healey & Uitvlugt, 2019), amnesia (Palombo et al., 2019; Seder-
berg et al., 2008), and event segmentation (Ezzyat & Davachi,
2014; Sahakyan & Smith, 2014).

In addition to providing an explanation for a broad range of
memory effects, retrieved context theory also makes many clear,
testable predictions. Here, we test one prediction that cuts to the
very heart of the theory: Episodic memories should contain spe-
cific information about the temporal order of events, even when
the memories are encoded incidentally. We begin by describing
the encoding and retrieval mechanisms that lead to this prediction.

Memory for Temporal Order as an Emergent Property
of Contextual Dynamics

Under retrieved context theory, memory for temporal order nat-
urally emerges from the combination of several mechanisms that
operate during encoding and retrieval. We illustrate this by
describing the theory’s account of the free recall task (we provide
a more in-depth explanation in later sections). In standard free
recall, a list of items (usually words) is presented one at a time for
study. At the end of the list, the participant is asked to recall as
many items as possible in whatever order they come to mind.
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In retrieved context theory’s account of free recall, two key
mechanisms operate during the encoding phase. First, each newly
presented item becomes associated with the state of context that
prevailed when it was presented. As a result of these associations,
context can later serve as a retrieval cue. Second, each item acti-
vates its own mental representations, which are then incorporated
into the existing state of context. Incorporating previous items
causes context to change, or drift. As a result of this drift, the state
of context that prevails when a given item is presented is most
similar to states that prevailed at nearby points in time—context
drifts in an autocorrelated fashion. In this way, context carries in-
formation about the temporal distance between items. Together,
these new item-context associations and the mechanism of context
drift allow the context associated with one item to provide a very
good cue for other items that were originally studied nearby in
time.
Retrieved context theory’s account of retrieval is based on two

additional mechanisms. First, memory search is initiated by using
the current state of the context representation as a retrieval cue.
Second, upon successful recall of an item, the item’s associated
mental context is reactivated, or reinstated. The reinstated context
then helps cue another item. Because items presented closer to-
gether in time are associated with more similar contexts, the rein-
stated context most strongly cues items studied immediately
before or after the just-recalled item. Thus, retrieved context
theory naturally predicts a temporal contiguity effect (TCE): the
tendency for the recall of one item to be followed by recall of
another item that was originally experienced close in time to the
first. Such an effect has been widely observed in laboratory tasks
(for a review, see Healey et al., 2019), including in free recall
(Kahana, 1996; Murdock, 1974; Postman, 1971); recognition
(Averell et al., 2016; Sadeh et al., 2015; Schwartz et al., 2005; but
see Bradley & Glenberg, 1983); paired associate tasks (Campbell
& Hasher, 2018; Caplan et al., 2006; Davis et al., 2008; but see
Osth & Fox, 2019); and even with real-world stimuli, such as auto-
biographical memories and news stories (Diamond & Levine,
2019; Moreton & Ward, 2010; Uitvlugt & Healey, 2019).
Notice that the encoding and retrieval mechanisms utilized in

retrieved context theory lie at the heart of both recall success and
the TCE: They allow for recall of individual items and simultane-
ously result in a tendency for items to come to mind in temporal
order. Thus, retrieved context theory predicts a TCE in almost any
situation where episodic memories are formed.1 By contrast, many
competing theories of episodic memory suggest a TCE should
occur under only certain circumstances (Healey et al., 2019). A
theory that attributes the effect to binding in short-term or working
memory, for example, would predict a TCE only when items are
presented close enough in time to allow temporally adjacent items
to co-occupy the short-term buffer and form interitem associations
(Howard & Kahana, 1999). Similarly, theories based on control
processes like strategic rehearsal predict a TCE only when items
are studied intentionally (Healey, 2018; Hintzman, 2016). This
divergence of predictions makes the TCE an important tool for
testing retrieved context theory against other theories of episodic
memory.
Here, we consider one particularly diagnostic situation: inciden-

tal encoding. Retrieved context theory makes the strong prediction
that under incidental encoding, successful recall of items should
be accompanied by a TCE. Moreover, a formal model of the

theory should be able to precisely fit the size and shape of the
effect (Healey, 2018). Conversely, many other theories predict lit-
tle or no TCE under incidental encoding, such as those which posit
that temporal information is only encoded through intentional use
of control processes (Healey et al., 2019). In a serious challenge to
retrieved context theory, some work has found that when partici-
pants are not expecting a memory test, the TCE is greatly reduced
even though overall recall remains high (Healey, 2018; Nairne et
al., 2017). It is unclear if this pattern of substantial recalls paired
with a very small TCE in incidental encoding is consistent with
the prediction of retrieved context theory that these measures
should be coupled—if not, the theory would be all but falsified,
and the results would instead support an account which attributes
the TCE entirely to strategic control processes.

We argue that for retrieved context theory to be fully compati-
ble with the incidental TCE, three criteria must be met: (a) a TCE
must be present under incidental encoding at both short and long
timescales, (b) a model of retrieved context theory must be able to
simultaneously fit not only the incidental TCE, but also the num-
ber of items recalled, and (c) the nature of the incidental TCE
must be consistent with being generated by a context reinstatement
mechanism. We elaborate on each of these criteria subsequently.

Timescale Similarity

Retrieved context theory predicts that temporal contiguity
should occur across timescales (Howard, 2004); a TCE should
occur, to some degree, regardless of the time passing between item
presentations. The context drift mechanism entails that, in almost
all situations, the similarity of the mental contexts associated with
any two items is correlated with the relative temporal distance
between them. The absolute time passing between item presenta-
tions should not change this. Items studied 1 s apart will be associ-
ated with more similar contexts than items studied 10 s apart.
Similarly, items studied 10 s apart will be associated with more
similar contexts than those studied 100 s apart. Many other mem-
ory models would not predict this timescale similarity (Healey et
al., 2019). For example, theories based on binding in a short-term
buffer (e.g., Raaijmakers & Shiffrin, 1981) often assume that items
presented close together in time are more likely to occupy the
buffer simultaneously (Phillips et al., 1967). As such, binding in a
short-term buffer would produce a TCE when items are encoded
1 s apart, but not when there is a distraction-filled delay between
items because a filled delay should prevent multiple items from
being active in the short-term buffer at any given moment and
abolish the TCE (Howard & Kahana, 1999).

Supporting retrieved context theory’s prediction that the TCE
should be consistent regardless of timescale, a significant TCE has
been found using continual distractor free recall (CDFR), in which
a distractor task of sufficient duration to fill the buffer intervenes
between each item presentation (Howard & Kahana, 1999). A

1 Under retrieved context theory, episodic memories are inherently
dependent on the formation of item-context associations; thus, it predicts a
TCE in almost all situations. However, there are technically some special
cases where the models based on retrieved context theory can form
episodic memories without producing a TCE. These include cases where
context does not drift during encoding and cases where new item-context
associations are formed during study but are not reinstated at recall.
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TCE has been observed at longer timescales as well, even when
items are separated by hours (Cortis Mack et al., 2017).
In these previous CDFR experiments, however, participants

deliberately encoded stimuli. Therefore, an explanation based on
binding in a short-term buffer would still be able to account for the
TCE in CDFR if deliberate control processes are not fully dis-
rupted by the distractor task. For example, a participant might
engage in rehearsal during the distractor task or may intentionally
bring to mind a previous item while studying a new item. Such
control processes would allow items separated by long delays to
still co-occupy short-term memory and form temporal bonds. In
incidental encoding, when participants are unaware their memory
will be tested, there is no reason to engage such deliberate control
processes, and thus a short-term buffer explanation would predict
a null TCE. In contrast, retrieved context theory would still predict
a TCE in CDFR even under incidental encoding. A few studies
have examined recall and temporal contiguity in realistic situa-
tions, where items are presumably incidentally encoded (Moreton
& Ward, 2010; Uitvlugt & Healey, 2019), but these data are not
well-suited for modeling. Examining recall with incidental encod-
ing in a well-controlled CDFR task is key: Failing to find a signifi-
cant TCE in an incidental CDFR task would support accounts
based on binding in a short-term buffer and pose a serious chal-
lenge to retrieved context theory.

A Link Between Recall and the TCE

Another key feature of retrieved context theory is that both
memory for individual items and memory for temporal order arise
from the same mechanisms. As a result, the framework predicts a
tight coupling between overall recall and temporal contiguity.
Stronger associations between items and the prevailing mental
contexts at encoding causes the recall of a given list item to gener-
ate a stronger reinstated context cue for recalling adjacent list
items. This will tend to increase both recall and the TCE. Alterna-
tively, failing to form or reinstate item-context associations should
decrease both recall and the TCE (e.g., Palombo et al., 2019).
Indeed, a correlation between the size of the TCE and recall levels
has been reported for tasks using intentional encoding instructions
(Healey et al., 2014; Sederberg et al., 2010; Spillers & Unsworth,
2011). In incidental encoding tasks, this relationship is much
weaker. Whereas overall recall is slightly lower in incidental com-
pared with intentional encoding tasks (Glenberg et al., 1980; Mar-
shall & Werder, 1972; Nairne et al., 2017; Neath, 1993), the TCE
is greatly reduced (Healey, 2018; Nairne et al., 2017). Moreover,
variations in recall levels across incidental encoding tasks do not
correlate with the size of the TCE (Healey, 2018). It is unclear if
models of retrieved context theory can simulate this degree of
decoupling between overall recall and contiguity. Thus, to fully
explain the dynamics of incidental encoding, retrieved context
theory must be able to simultaneously fit a pattern of substantial
recall and a small TCE.

The TCEMust Be Distinct From the Recency Effect

Under retrieved context theory, two distinct factors can contrib-
ute to the TCE. The first, as we have already discussed, is context
reinstatement. During encoding, autocorrelated context drift
allows context to carry information about item order. During

recall, the context associated with a just-recalled item is brought to
mind through context reinstatement and is incorporated into the
current mental context, causing context to drift. This context then
serves as a cue which will tend to activate items studied nearby in
time because the context carries information about temporal order.

Although context reinstatement is a key mechanism of retrieved
context theory, it is not the only factor which contributes to the
TCE. Contiguity can also be generated through recency. At the be-
ginning of the recall period, the theory assumes the current state of
mental context is used as a cue to begin recalling items. All else
being equal, the autocorrelated drift of context during the study
phase ensures that this end-of-list context is most strongly associ-
ated with end-of-list items. Thus, these end-of-list items are likely
to be recalled first (as indeed they are in immediate free recall
tasks; Hogan, 1975; Howard & Kahana, 1999; Laming, 1999).
Because end-of-list items were studied close together in time, the
bias to recall recent items first entails successively recalling sev-
eral events that were experienced close in time—the recency effect
naturally enhances the TCE (Davelaar et al., 2005; Kahana, 1996).
Indeed, as we will see, a strong recency effect is sufficient to pro-
duce a TCE even in the absence of any other contiguity-generating
mechanisms.

Thus, under retrieved context theory, the TCE observed with
intentional encoding is produced by a combination of both context
reinstatement and recency mechanisms. Under any straight-for-
ward interpretation, the theory would predict that both mecha-
nisms also operate during incidental encoding. It is possible,
however, that this straight-forward interpretation is wrong and that
context reinstatement makes no contribution to the TCE in inci-
dental encoding.2 If so, it would indicate that although both inten-
tional and incidental encoding produce a contiguity effect, they
represent very different types of contiguity. This would severely
limit the explanatory scope of retrieved context theory. Therefore,
we test whether the incidental TCE can be attributed to recency
alone.

The Present Study

For retrieved context theory to be fully compatible with the na-
ture of the TCE under incidental encoding, the three criteria speci-
fied in the preceding text must be met: (a) a significant TCE must
be observed for incidental encoding in CDFR; (b) a model of
retrieved context theory must be able to simulate temporal conti-
guity and overall recall in incidental encoding; and (c) the TCE in
incidental encoding must be consistent with being generated not
only by recency, but also by context reinstatement. To test these
criteria, we collected data from participants in both intentional and
incidental encoding conditions in either a delayed free recall
(DFR) or a CDFR task. We tested whether a TCE was present in
all conditions. Then, we evaluated the ability of a specific model
of retrieved context theory to simultaneously fit overall recall and
temporal contiguity. To determine if recency alone can explain the
incidental TCE, we also conducted novel analyses that controlled
for the effects of recency. Finally, we examined the necessity of
the context drift and reinstatement mechanisms that are central to
retrieved context theory.

2We thank Per Sederberg for suggesting this possibility.
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Method

Participants and Design

All data analyzed in this report are freely available on the Open
Science Framework at https://osf.io/wdhn8/. The methods closely
follow those of Healey (2018) except as noted here. Based on the
average effect size calculated for a variety of incidental encoding
conditions in Healey (2018), achieving 95% power to detect the
TCE in incidental encoding requires a sample size of at least 510
participants per condition. However, in addition to detecting the
effect, another major goal of this study was to fit a computational
model. Because the quality of model fits is limited by variance in
the data, we sought to test as many participants as possible. Thus,
we set a goal of obtaining data from at least 1,500 participants per
condition for a total of 6,000 participants.
We recruited 6,641 participants using Amazon Mechanical

Turk (MTurk). No participants who contributed to MTurk data
collection for Healey (2018) were permitted to participate because
of the similarity of these tasks. Participants were randomly
assigned to one of four conditions in a 2 (encoding type) 3 2 (dis-
tractor) between-participants design.
Data were excluded for one participant due to a technical error

that prevented them from completing the task. Data were also
excluded from participants in the incidental encoding conditions
who indicated on a postexperiment questionnaire that they were
aware their memory would be tested and from participants in any
condition who recalled fewer than two items or more than 24 items
(i.e., twice the length of the list). As a result, 304 incidental partic-
ipants were excluded for reporting awareness of a memory test,
893 additional participants were excluded for recalling fewer than
two correct (i.e., nonintrusion) items in a row, and three more par-
ticipants were excluded for providing more than 24 responses.
Excluding these participants increased overall recall for all groups,
as many participants were excluded for recalling too few items
(see Table 1). However, these exclusions did not alter the general
pattern of results for any of our analyses.
We also considered the possibility that some intentionally

encoding participants may have been cheating, since there was no
way to supervise participants during the task. Less than 2% of par-
ticipants correctly recalled more than 80% of list items. Of these,
only one reported items in perfect serial order, as might be
expected if a participant was cheating by writing down the words
as they appeared.
After all exclusions, a total of 5,441 participants (81.9% of the

original sample) were included in our analyses. See Table 1 for a

breakdown of sample sizes and exclusions for each condition. For
the final sample, the average age of participants was 35.4 years
(SD = 11.1), 58.9% were female, 55.3% reported an education
level of bachelor’s degree or above, and all reported English as
their first language. Participants were paid $1.00 for taking part in
the study (a rate of roughly $10.00/hr). All participants completed
written informed consent, and all procedures were approved by
Michigan State University’s Institutional Review Board.

Procedure

All participants viewed a single list of 12 words and were asked
to make an animacy decision for each word (“Is it easy to judge if
this word refers to something that is alive?”), indicating their deci-
sion (yes/no) with a key press. Participants were told that their
responses would be used to guide stimuli selection for a future
study. The animacy judgment task served to ensure participants
were attentive during the encoding period and provide a plausible
reason for participants in the incidental conditions to be viewing a
list of words. In the intentional conditions, participants were
informed that a free recall test would follow the study period; par-
ticipants in the incidental conditions were given no such warning.
The full text of the instructions given to participants is provided in
the online supplemental material.

For each participant, words were drawn from a pool of 1,638
positive or neutrally valanced nouns, a list developed for the Penn
Electrophysiology of Encoding and Retrieval Study (PEERS; Hea-
ley & Kahana, 2014; Lohnas & Kahana, 2014; Miller et al., 2012).
Words were presented for 4 s each, with a 1-s interstimulus inter-
val between words. No instructions were given on whether partici-
pants should read the words aloud or silently.

Manipulating the presentation of distractors allows for a test
of the model’s prediction of approximate timescale similarity: A
TCE should be present regardless of the amount of time (pro-
vided the intervening cognitive activity causes context to drift)
between items. In the DFR control conditions, a 16-s distractor
period followed only the final word. In the CDFR conditions,
the same 16-s distractor period followed the presentation of each
word. Each distractor period began with a 1-s blank screen after
the presentation of the previous word, followed by 13 s of a
math distractor task. The distractor task required solving addition
problems in the form A þ B þ C = ?, where A, B, and C were
positive, single-digit integers. Participants were instructed to try
to “solve as many problems as you can without sacrificing accu-
racy.” The task automatically advanced after the 13 s had
passed. To ensure participants noticed when the distractor task
ended, a red screen was presented for 2 s after the last problem.
Thus, the total duration of each distractor period was 1 s þ 13 s
þ 2 s = 16 s.

Following the end-of-list distractor task, participants in all con-
ditions were given 75 s to recall as many words from the list as
possible, in any order. Participants typed recalled words into a text
box on the computer screen. Once a word had been entered, the
word disappeared, and a blank text box was available for the next
recall. A spell-checking algorithm (described in Healey, 2018)
checked participants’ typed responses for typos and scored their
recall accuracy.

Table 1
Sample Sizes and Exclusions for Awareness and for Number of
Recalls by Condition for Intentional and Incidental Encoding
With a Delayed Free Recall (DFR) or Continual Distractor Free
Recall (CDFR) Task

Condition n included
n excluded

(for awareness)
n excluded
(for recalls)

Intentional DFR 1,487 174
Incidental DFR 1,306 163 191
Intentional CDFR 1,406 253
Incidental CDFR 1,242 141 277
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After the recall period, participants completed a demographic
and strategy use questionnaire. Strategy data are not analyzed in
this article.

Results

How Does Encoding Intentionality Affect Recall
Initiation and Recall Accuracy?

Figure 1 displays probability of first recall (PFR) curves and
serial position curves (SPCs) for intentional and incidental
encoding groups for both DFR and CDFR. PFR curves display
the probability that an item from a given serial position will be
recalled first. The PFR curves reveal greater recency in inci-
dental encoding and greater primacy in intentional encoding.
Whereas participants in the CDFR conditions tended to initiate

recall with items from the end of the list, participants in the DFR
groups were more likely to initiate recall with beginning-of-list
items. These patterns are similar to those seen in other free recall
experiments in which participants completed a semantic orienting
task for each word (Healey, 2018; Howard & Kahana, 1999).

We analyzed recall accuracy by examining SPCs, which give
the probability that an item from each serial position will be
recalled (see Figure 1). There is a clear recency effect for all four
groups, albeit stronger in the CDFR conditions. The intentional
conditions display slightly higher recall than the incidental condi-
tions, particularly for words near the beginning of the list. In all
conditions, the primacy effect is small. Although most work with
DFR has found a strong primacy effect (see Bjork & Whitten,
1974; Neath, 1993; Unsworth, 2008), attenuated primacy has been
reported occasionally when participants must complete a second-
ary task during encoding (Bhatarah et al., 2006; Healey, 2018;

Figure 1
Probability of First Recall (PFR) Curves and Serial Position Curves (SPCs) for Intentional Versus
Incidental Encoding

Note. (A) Delayed free recall. (B) Continual distractor free recall. Error bars are bootstrapped 95% confidence
intervals.
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Howard & Kahana, 1999; Marshall & Werder, 1972; Murdock,
1965) or they are otherwise discouraged from rehearsing (Healey,
2018; Tan & Ward, 2000). Thus, in the present study, the semantic
orienting task used during encoding could account for the reduced
primacy in DFR.

Is There a TCE in Incidental Encoding?

To analyze the TCE, we examined lag-conditional response
probabilities (lag-CRPs). The unit of analysis for the lag-CRP is a
transition: recalling one list item and moving on to recall another
list item. Lag-CRP gives the probability of making transitions of
different temporal distances and directions within a list, measured
in terms of lag between items’ original positions within the study
list. For example, recalling the third item in the list and transitioning
to the fifth item would be lag = þ2 transition. Recalling the third
item in the list followed by the first item would be lag = –2 transi-
tion. For each lag, a CRP is calculated by dividing the number of
times a transition of that lag was actually made by the number of
times a transition of that lag was possible. All list items that had not
been previously recalled by the participant are considered possible.
A lag of þ1, for example, would not be possible if the just-recalled
item were the last item in the list. Similarly, if a participant recalls
the fourth item in the list, followed by the fifth item, and then transi-
tions to a new word, a lag of –1 would not be possible for that tran-
sition, because the item one position back (Item 4) has already been
recalled. Lag-CRPs are typically highest for jlagsj ¼ 1 and sharply
decrease for farther jlagsj. There is also generally a bias for near
forward lags, resulting in a forward asymmetry (Kahana, 1996).
In all four conditions, presented in Figure 2, the lag-CRP is high-

est for short lags, decreases for longer lags, and displays the for-
ward asymmetry typically associated with a TCE. The lag-CRPs
for the intentional conditions are consistent with previous findings
that a nonzero TCE is present regardless of distractor task (Howard
& Kahana, 1999). The lag-CRP is flatter in the incidental condi-
tions, particularly in the forward direction, consistent with reports
of a reduced TCE under incidental encoding (Healey, 2018; Nairne
et al., 2017).3 The difference in the shapes of the lag-CRPs across
conditions will be discussed in further detail in a later section,
where we introduce a new analysis to disentangle the influence of
recency versus context reinstatement and conduct statistical tests on
the size of the TCE. For now, we simply note that the lag-CRP
analysis addresses the first of the model evaluation criteria: There
appears to be a TCE in incidental encoding with the CDFR task.

Can Retrieved Context Theory Simultaneously Fit
Recall Levels and the TCE in Incidental Encoding?

To evaluate the second criterion, whether retrieved context
theory can produce high recall accompanied by a modest TCE, we
fit a version of the temporal context model (Howard & Kahana,
2002; Sederberg et al., 2008) to the data. The temporal context
model is a computational model that implements the core mecha-
nisms of retrieved context theory, including context drift, associa-
tion formation, and context reinstatement. Although we fit one
specific implementation of retrieved context theory, the core predic-
tions made by this theory are consistent across implementations.
Here, we give a conceptual overview of the model (for a full formal
description, see Appendix A).

Model Description

In the temporal context model, two representational layers inter-
act during encoding and recall: the feature layer and the context
layer. Nodes on the feature layer represent individual items. For
example, if a participant is presented with the word river, the node
representing river will be activated on the feature layer. Once river
has been activated, it in turn activates its existing semantic and epi-
sodic associations. For example, viewing river may activate
thoughts of the sound of a river, the experience of walking on a riv-
erbank, or the fact that people often go fishing on a river. This set of
river-related thoughts, which we call context, is represented as an
element on the context layer. The first panel of Figure 3 illustrates
the activation of river on the feature layer and the resulting activa-
tion on the context layer.

When the next word, money, is presented, its feature representa-
tion will become active and completely replace the representation
of river on the feature layer (the second panel of Figure 3). That is,
feature representations are active on the feature layer only while
that item is being presented. Oncemoney’s feature representation is
activated, it in turn activates the context associated with money on
the context layer.

Critically, when money appears some of the semantic context
of river remains active. The context representations of both river
and money blend on the context layer, producing a new state of
context—this is context drift. Drift is illustrated in the second
panel of Figure 3, where the context representations for both river
and money are active on the context layer. The image of river is
slightly smaller than it was in the first panel to represent that as
each new word is encoded, earlier representations on the context
layer gradually fade. In this way, the context layer serves as a
recency-weighted record of the items that have been presented,
such that recent items are more strongly represented than earlier
items. That is, the context layer carries information about past
items and their serial order.

Under the model, episodic memories are formed by creating
associations between the feature layer representation of each pre-
sented item and the state of the context layer that prevailed when
the itemwas first presented. In most implementations, the formation
of these new associations between the item and current mental con-
text occurs before an item activates its context representation (for a
discussion, see Sederberg et al., 2008). To continue with our exam-
ple, when the next word, cookie, is presented, the cookie feature
representation forms a new association to the current mental con-
text, which contains elements of bothmoney and river. Then, cookie
activates its element on the context layer. The third panel of Figure
3 displays the state of the model after cookie’s context representa-
tion has been activated.

To model distractor tasks, each distractor period is given its own
representation on the context and feature layers. When distractor

3 In all conditions, the TCE is smaller and more symmetric than is
typically observed. The highest values of lag-CRP are typically between
0.3 and 0.5, whereas the highest lag-CRP in these conditions is below 0.2.
This may be due to our participants’ lack of task experience. Previous work
has found that the size of the TCE in participants’ recalls increases with
practice: In an analysis of data from the PEERS dataset, the TCE was
present but small in the first list, peaking at less than 0.2; by the twelfth list,
the TCE was much larger (Healey et al., 2019). These results are also
consistent with those for intentional and incidental encoding observed in
Healey (2018), where participants also studied a single list.
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tasks are presented, they cause context to drift just like a study item,
albeit at a different rate (see Appendix A for details). The result is
that the context evoked by the previously-studied items fades more
than it would without the distractor.
At recall, the current mental context is used as a cue for recalling

items. When recall begins, the current state of context is most similar
to the contexts associated with items near the end of the list, so the
current context provides a strong cue for items at the end of the list.
Thus, end-of-list items are typically recalled first. As discussed in the
introductory paragraphs, this will naturally produce a (small) TCE.
But the similarity of the end-of-list context to end-of-list items is

not the onlymodelmechanism that produces a TCE: Once an item is
successfully recalled, its associated context is brought to mind, or
reinstated. For example, recalling cookiewould reinstate the cookie
context and also the river–money context that was active when
cookie was encoded. This reinstated context is then integrated with
the current context, causing context to drift in the same manner as
during encoding. The newly updated context is then used to cue the
next recall. The TCE arises because the reinstated context is a strong
cue for items originally studied nearby in time to the just-recalled
item. For example, the river–money context reinstated by recalling
cookie is a strong cue for recalling money. Thus, under retrieved
context theory, the TCE results largely from context reinstatement.

Simulation Methods

This framework predicts that a significant TCE will occur under
incidental encoding because context drift during encoding and rein-
statement during recall are both integral to episodic memory forma-
tion. It also predicts that overall recall will tend to be lower when
the TCE is small because both depend on reinstatement. Thus, it is
unclear if the framework’s predictions will hold for the incidental

conditions, in which the TCE is small but overall recall is neverthe-
less substantial. We attempted to fit the model to both the SPC and
lag-CRP of each of the four conditions to test the model’s, and thus
retrieved context theory’s, compatibility with this pattern. For
details on our methods for model fitting and a table of best-fit pa-
rameter values, see Appendix A.

Simulation Results

Simulated data from the best-fitting parameter set for DFR are
presented in Figure 4A; best-fit simulated data for CDFR are pre-
sented in Figure 4B. The model was able to simultaneously fit the
general pattern of recalls and temporal contiguity in each condi-
tion. In the model simulations, overall levels of recall are greater
in the intentional conditions compared with the incidental condi-
tions, just as in the data.4 Similarly, the simulated lag-CRPs show
evidence of a TCE in all conditions but with a flatter curve for the

Figure 2
Lag-Conditional Response Probability (Lag-CRP) Curves for Intentional Versus Incidental Encoding

A B

Note. (A) Delayed free recall. (B) Continual distractor free recall. Error bars are bootstrapped 95% confidence intervals.

4 Although we did not fit the model directly to probability of first recall
(PFR), a valid question is whether the model would be able to fit to this
measure of recall initiation. In past work, a similar model was unable to fit
both the primacy and recency in PFR curves (Sederberg et al., 2008). We
suggest this may stem from a difficulty in fitting the average compared with
fitting individual participants. A single participant rarely displays the
pattern we see in the PFR average, where there is some primacy but also
some recency; rather, they tend to display either recency or primacy, not
both (Healey & Kahana, 2014). In the current article, we did not fit the
model to the recalls of individual participants because of the nature of an
incidental encoding study. Because each participant could contribute only
one list of data, there is a great deal of variability at the individual level,
which does not facilitate precise model fitting. But in Healey and Kahana
(2014), participants completed many lists, and thus it was possible to fit a
retrieved context theory model directly to PFR. Their model was able to fit
to recall initiation of individual participants in an immediate free recall task.
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incidental conditions, especially in the forward direction. This pat-
tern matches that observed in the data. Most critically, in the inci-
dental conditions, the model was able to simultaneously produce
relatively high recall and a relatively small TCE.
An obvious next step is to investigate which model parameters

account for the differences across conditions. Table A1 shows the
best-fit parameter values for each condition. Average parameter
values across 30 model fits are presented in Table A2. Many param-
eter values differ significantly between conditions: Six out of 10 pa-
rameters differ between incidental and intentional encoding across
distractor conditions (additional parameters differ for only one dis-
tractor condition). Many of these differences align with the core
mechanisms of retrieved context theory. For example, benc, which
contributes to the size of the recency effect, among other things, is
highest in the incidental CDFR condition. This is consistent with
the steeper recency effect in this condition. In contrast, brec, which
controls context drift during recall (i.e., reinstatement), is lower in
the incidental conditions; when brec is lower, there is less contigu-
ity, consistent with the smaller TCE in the incidental conditions.
We stress that these are not the only parameters that differ across
conditions—the question of which model processes account for the
difference between intentional and incidental encoding defies a
simple summary. It is perhaps unsurprising that expecting a mem-
ory test changes many aspects of both encoding and recall. We fur-
ther investigate the necessity of specific parameters in later
sections.
In sum, these model fits show retrieved context theory is con-

sistent with the patterns in both overall recall and temporal

contiguity in incidental encoding. But questions remain: Is the
TCE in participants’ recalls a result of the same recency and rein-
statement mechanisms specified in retrieved context theory? Is the
model fit quantitatively acceptable in addition to capturing the
general shape of the data? We answer these questions in the next
sections.

Does Context Reinstatement Occur Under Incidental
Encoding?

We have addressed the first two criteria for evaluating retrieved
context theory: There is a TCE under incidental encoding which is
not limited to short timescales, and the model is able to qualitatively
fit both overall recall and temporal contiguity in all conditions.
However, as described previously, there are two mechanisms speci-
fied by retrieved context theory that work together during recall to
generate the TCE: recency and context reinstatement. The context
reinstatement mechanism distinguishes retrieved context theory
from other models of episodic memory. Yet, it is unclear if rein-
statement contributes to the TCE in incidental encoding. Because
incidental participants showed more pronounced recency, as well as
a reduced TCE, it is possible that the contiguity observed under in-
cidental encoding is due purely to recency.

We demonstrate how recency alone can generate a TCE with an
example. Imagine a participant who recalls items from serial posi-
tions 10, 11, and 12 from a 12-item list but has no bias for recall-
ing items in temporal order. That is, there is no mechanism (like
context reinstatement) to create a bias for short-lag transitions

Figure 3
Visual Representation of the Encoding Period Under Retrieved Context Theory

Note. The identities of items are represented on the feature layer, with one node for each
item. Each item has a corresponding node on the context layer which represents that item’s
contextual associates. When the first item, river, is presented, its node becomes active on
the feature layer, which then activates the river-related node on the context layer. When the
next item, money, is presented, its representation on the feature layer becomes active, com-
pletely replacing the river activation on the feature layer. Next, money-related context
becomes active on the context layer, but it does not entirely replace the river context.
Instead, the river context fades so that the current mental context is a blend of river and
money contexts in which more recent items are more highly activated. The mental context
serves as a recency weighted record of the past. This process repeats when cookie is pre-
sented: Its node on the feature layer becomes active, and its context representation is acti-
vated on the context layer, blending with other elements on the context layer to create a new
river–money–cookie context.
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over long-lag transitions. Instead, the participant would output
these items in random order (e.g., 10, 12, 11). Nonetheless, as a
result of recalling only the most recent items, only jlagj ¼ 1 or
jlagj ¼ 2 transitions are possible. Thus, this participant’s recalls
will appear to have a TCE when measured with lag-CRP: They
make near lags more often than far lags by necessity because far
lags are impossible given their recalls. This is directly a result of
having recalled only recent items and is distinct from a mechanism
like context reinstatement, where one recalled item directly cues
other items studied nearby in the list. In other words, this partici-
pant displays a TCE due purely to recency.
To further illustrate, we simulated data from a pure-recency par-

ticipant using a simple model. For each simulated list, we decided
whether the item from each serial position would be recalled by

randomly drawing from a binomial distribution where the proba-
bility of success was set to the recall probability of the correspond-
ing serial position in the SPC of the incidental CDFR condition
(the condition with the strongest recency effect). This gave us a set
of n items that were recalled from this list. To determine the order
in which the simulated participant recalled these n items, we sim-
ply randomly shuffled the items. This produced a recall sequence
with strong recency but where items were recalled independently
of each other. Thus, any contiguity in this simulation is due to the
shape of the SPC, particularly the strong recency effect. The
results of these simulations are presented in Figure 5A. The lag-
CRP for the pure-recency model appears to have a TCE, at least in
the backward direction. Indeed, this pure-recency lag-CRP with its
steep negative slope for backward lags and slight positive slope

Figure 4
Best-Fitting Simulated Serial Position Curves (SPCs) and Lag-Conditional Response Probability
(Lag-CRP) Curves From the Temporal Context Model

A

B

Note. (A) Delayed free recall. (B) Continual distractor free recall. Open points represent simulated data based
on the best-fit model.
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for forward lags is quite similar to the lag-CRP observed for the
incidental conditions in Figure 2.
We can contrast this pure-recency participant with another par-

ticipant who recalls exactly the same items but who does have a
bias toward recalling those items in temporal order. For example,
they may have first recalled Item 12, which cued Item 11, which
in turn cued Item 10. Again, this participant recalls few items and
has a strong recency effect, but they also show a preference for
shorter lags within the lags that are possible given their recalls.
Even though jlagj ¼ 1 and jlagj ¼ 2 were possible, this participant
made only transitions of lag = �1. Like the pure-recency partici-
pant, this participant’s lag-CRP would show a TCE, but one that
reflects recency plus an additional bias toward short lags. We
simulated data for this type of “recency-plus” participant with
another simple model. The n items recalled for each list were

selected with the same procedure used in the pure-recency model,
but they were output in a nonrandom order.

Specifically, the first recall, output i, was selected randomly
from among the n items. For the next recall, output j, we computed
the possible lags (j – i) for the i to j transition and selected the next
recall by drawing from a weighted distribution that heavily favored
near lags. To create this distribution all possible jlagj ¼ 1 transi-
tions were given a weight of .9, all jlagj ¼ 2 transitions a weight of
.6, all jlagj ¼ 3 transitions a weight of .4, all jlagj ¼ 4 transitions a
weight of .3, and jlagj$ 5 transitions a weight of .2. The weight for
each possible lag was then converted to a probability by dividing
the sum of the weights across all possible lags. In other words, there
was both a strong recency effect and a bias for near lags. The lag-
CRP for simulated data in Figure 5B displays a TCE with a steep
slope for both backward and forward lags.

Figure 5
Simulated Serial Position Curves (SPCs) and Lag-Conditional Response Probability (Lag-CRP)
Curves

A

B

Note. (A) The pure-recency model, where recall order was randomly selected with regard to lag. (B) The
recency-plus model, where recall order was selected with a bias for near lags. For each model, we generated
recalls for 100,000 simulated participants, each recalling from one list of 12 items.
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Taken together, the pure-recency and recency-plus simulations
demonstrate the lag-CRP cannot conclusively establish whether
contiguity is due only to recency. Even in simulated data with min-
imal noise, both the pure-recency and the recency-plus models
show a gradient across backward lags. The telltale sign of the
recency-only model is that there is a slight preference for longer
forward transitions. In real data, variability could easily disguise
this sign. Therefore, we introduce new measures to test if the TCE
observed in incidental CDFR is generated, at least in part, by addi-
tional mechanisms such as context reinstatement, as predicted by
retrieved context theory.

Temporal Bias Scores

Temporal bias scores measure the level of temporal contiguity
in a set of recalls relative to what would be expected if the same
items were recalled in random order (Uitvlugt & Healey, 2019).
As a result, they are able to disentangle the effects of recency (or
other deviations of the SPC from a uniform distribution, like pri-
macy) and other mechanisms, like context reinstatement. If tempo-
ral bias scores indicate there is no difference between contiguity
expected due to chance and the observed TCE, then any temporal
contiguity observed in the lag-CRP must be due to recency (or
other aspects of the SPC). For each lag, temporal bias is calculated
by finding the difference between the number of times a partici-
pant made a transition of that lag and the number of times the par-
ticipant would be expected to make transitions of that lag if items
were recalled in random order. This expected count is calculated
by taking the items actually recalled by a participant, randomly
permuting the order of recalls, and recording which lags are made
within the new permuted order. Repeating this random shuffling
procedure many times provides a distribution of expected lag
counts, and we define the expected count as the average of this dis-
tribution. Temporal bias scores can then be calculated as the dif-
ference from chance normalized by chance:

temporal bias ¼ actual count� expected count
expected count

: (1)

A temporal bias score of zero indicates a lag occurs exactly as
often as would be expected if previous recalls have no influence on
the next recall: A participant that recalls items in random order
should have temporal bias scores of zero for all lags. A score above
zero for a given lag indicates the lag occurred more often than
expected; there is a positive bias for this lag. A temporal bias score
below zero for a given lag indicates the lag occurred less in actual
recalls than was expected due to chance. A participant with a strong
TCE due to a nonrecency mechanism (e.g., context reinstatement)
would have positive temporal bias scores for short lags and nega-
tive temporal bias scores for far lags.
Temporal bias curves for our simple pure-recency and recency-

plus simulations are presented in Figure 6 (to illustrate how lag-
CRP and temporal bias scores differ in a standard free recall task,
see Appendix B for a comparison in two archival data sets). The
temporal bias scores for the pure-recency model are near zero for
all lags, indicating presentation order has no impact on output order
beyond the influence of recency on which items are recalled. This is
consistent with the data generation process: The order of recalls
was indeed chosen randomly. In the recency-plus model, where

data were generated with a bias for near lags, the temporal bias
curve shows a clear positive bias for near lags that decreases for
farther |lags|. That is, the temporal bias scores accurately detected
that there was a TCE above and beyond the influence of recency.

Context Reinstatement in the Data

Is the TCE observed in our incidental conditions due to recency
alone? The temporal bias curves for the actual data (presented in
Figure 7) provide a clear answer: There is a TCE in all conditions
beyond the influence of recency. In the DFR conditions, the tem-
poral bias scores for the intentional and incidental groups show a
positive bias for near lags and a negative bias for far lags. The
groups differ only at lag = þ1, where there is a much stronger pos-
itive bias in the intentional condition. Similarly, in both CDFR
conditions there is a positive bias for near lags, with the greatest
bias for lag = þ1 in the intentional condition. The incidental
CDFR condition displays a positive bias for backward lags from
–1 to –5, and most of the forward lags occur less often than
expected. This indicates that although there is a TCE in the inci-
dental CDFR condition, these participants also had a bias toward
backward lags over forward lags.

To complement temporal bias curves, we can use temporal fac-
tor scores to provide a single-number measure of the size of the
TCE. These scores allow for a statistical test for the presence of
the TCE: whether the effect is significantly larger than expected
by chance (Polyn et al., 2009; Sederberg et al., 2011). These
scores are calculated by taking the absolute value of the lag of
each transition made by a participant and finding its percentile
within the distribution of the jlagsj that were possible for that tran-
sition: A higher score indicates more temporal contiguity. Typi-
cally, a score of .5 would indicate no bias. However, temporal
factor scores can be compared with a chance level calculated with
the same procedure used in calculating temporal bias scores. The
order of recalls is permuted many times, and a temporal factor
score is calculated for each permuted order (Healey, 2018; Polyn
et al., 2011). This allows us to correct for the effects of recency. A
temporal factor score above chance indicates a significant TCE
due to mechanisms beyond recency.

Applying temporal factor scores to our simple recency models
(second column of Figure 6) shows they accurately detect that
there is no TCE beyond the effects of recency in the pure-recency
data, but there is a nonrecency TCE in the recency-plus data. That
is, temporal factor scores can detect the difference between a TCE
due only to recency and one to which context reinstatement or
similar mechanisms also contribute. When applied to the actual
data, temporal factor scores reveal a significant TCE in all condi-
tions. The second column of Figure 7 shows that temporal factor
scores for all groups, including both incidental groups, are well
above chance. In summary, the temporal bias and temporal factor
scores for the incidental conditions indicate that contiguity in inci-
dental encoding is consistent with the operation of both recency
and context reinstatement.

Context Reinstatement in Retrieved Context Theory

The temporal context model was able to fit the lag-CRP, but as
demonstrated with the pure-recency and recency-plus simulations,
the lag-CRP analysis does not distinguish between a TCE due to
recency and a TCE due to other mechanisms. Therefore, it is still an
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open question whether the model was utilizing the core mechanisms
of context drift and context reinstatement in generating temporal con-
tiguity, as predicted by retrieved context theory, or if it did so by
using other mechanisms.
This is a particular concern in incidental encoding where the TCE is

smaller and there is greater recency in participants’ recalls. These fea-
tures may make it possible for the model to match participants’ level
of contiguity using only the recency mechanism or through flexibility
provided by other parameters. Thus, we conducted a series of

simulations to determine if context drift and reinstatement truly are criti-
cal to the model’s ability to account for contiguity in the incidental
conditions.

We began by fitting the full version of the model (described in Ap-
pendix A) to both SPCs and temporal bias scores, which measure the
TCE once the effects of recency have been accounted for. We then
compared these full model fits to submodels in which context drift and
context reinstatement were eliminated by setting the parameters that
control these mechanisms to zero. If these restricted models can fit the

Figure 6
Simulated Temporal Bias Curves and Temporal Factor Scores

A

B

Note. (A) The pure-recency model, where recall order was randomly selected. (B) The recency-plus model,
where recall order was selected with bias for near lags. For each model, we generated recalls for 100,000 simu-
lated participants, each recalling from one list of 12 items. Temporal bias scores were calculated for each lag by
counting the number of times a participant actually made a transition of that lag and the number of times such a
transition was expected by chance. The expected count was determined by permuting the order of the recalled
items 500 times and counting how many times each lag occurred for each permutation. Temporal bias is the dif-
ference between the actual count and average expected count, divided by the average expected count. The dotted
line for the temporal bias scores indicates a score of zero. Chance for temporal factor scores, represented with
the dotted line, was determined by calculating temporal factor scores for each of 100 random permutations of the
order of recalls and getting the average of this distribution.
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data as well as the full model, it would indicate that contiguity can be
generated in the model through flexibility provided by other, theoreti-
cally unimportant, parameters (e.g., the decision parameter s used at
recall). If instead a version of the model in which a theoretically impor-
tant parameter is restricted to zero produces an inferior fit to the full
model, in which all parameters are allowed to freely vary, this would
provide evidence that the model’s fit is dependent on specific, theoreti-
cally important, cognitive mechanisms.

Full Model

The temporal context model was fit to SPCs and temporal
bias scores for each incidental condition. The full version of

the model provided good fits to both overall recall and tempo-
ral contiguity generated beyond the effects of recency for both
the incidental DFR (see Figure 8) and incidental CDFR (see
Figure 9) conditions. Parameter values are presented in Table
A3. The model was able to capture the temporal bias for near
lags, as well as the general shape of the SPC, for both inciden-
tal conditions. The model was also able to approximate the
positive bias for backward lags observed in the incidental
CDFR condition. This indicates that, consistent with the data,
the temporal context model can generate temporal contiguity
through both context drift and reinstatement, while still generat-
ing recalls with high levels of recency.

Figure 7
Temporal Bias and Temporal Factor Scores for Intentional Versus Incidental Encoding

A

B

Note. (A) Delayed free recall. (B) Continual distractor free recall. Temporal bias scores were calculated for
each lag by counting the number of times a participant actually made a transition of that lag and the number of
times such a transition would be expected by chance. The expected count was determined by permuting the
order of the recalled items 500 times and counting how many times each lag occurred for each permutation.
Temporal bias is the difference between the actual count and average expected count, divided by the average
expected count. The dotted line for the temporal bias scores indicates a score of zero. Chance for temporal fac-
tor scores was determined by calculating temporal factor scores for each of 100 random permutations of the
order of recalls and getting the average of this distribution. Chance temporal factor scores are represented with a
dotted line. Error bars are bootstrapped 95% confidence intervals.
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Submodel 1: Eliminating Context Drift During Encoding

The rate of context drift during encoding is controlled by
benc, which, among other things, contributes to the size of the
recency effect. When benc is higher, items from the end of the
list are more likely to be recalled first. In contrast, when benc
= 0, context is unable to drift during the encoding period, and
all items form associations with the same state of context; each
item is an equally good cue for all other items. Therefore, we
would expect the TCE to be abolished.
When fitting the submodel to the DFR condition, we prevented

context drift during encoding by simply setting benc to zero. For
the CDFR condition, however, we must also consider how the dis-
tractor task that intervenes between each item influences drift dur-
ing encoding. Any context drift caused by the distractor task
between items n and n þ 1 would cause the two items to be associ-
ated with slightly different states of context, allowing a TCE to
reemerge. Thus, when fitting the submodel to the CDFR condition,
we set both benc and bdistract, which controls the rate of context
drift during a distractor task, to be zero.

The second columns of Figures 8 and 9 show that the model
was not able to fit to temporal bias scores when context drift
was eliminated during incidental encoding. In DFR (second
column of Figure 8), there was a nearly flat TCE when benc =
0. In CDFR, the model was similarly unable to fit to both the
SPC and temporal bias scores at the same time (second column
of Figure 9). See Table A4 for a list of parameter values for
this submodel fit.

Submodel 2: Eliminating Context Reinstatement During
Recall

To determine if the context reinstatement mechanism is nec-
essary, the brec parameter can be set to zero. brec determines the
extent to which a just-recalled item’s context is reinstated and
incorporated into the cue for the next recall; when brec is lower
there tends to be less contiguity. If brec = 0, then context does
not drift during retrieval, and no context reinstatement
occurs. In principle, the submodel should be unable to fit the
temporal bias scores; however, if the model is overflexible, it

Figure 8
Comparison of Temporal Context Model Simulations to the Data for the Incidental Delayed Free Recall Condition

Note. The top row shows temporal bias curves, and the bottom row shows serial position curves (SPCs). Each column shows the best-fitting simu-
lated data for each version of the model. In the full model, presented in the first column, all parameters were allowed to freely vary. In the second
column, context drift during encoding was prevented by setting benc = 0. In the third column, context drift during recall was prevented by setting
brec = 0. Open points represent simulated data based on the best-fit model. Error bars are bootstrapped 95% confidence intervals.
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may be able to produce a reasonable fit using the remaining
mechanisms.
Confirming the importance of context reinstatement, the model

produced poor fits when reinstatement was eliminated, with a
nearly flat contiguity effect for both encoding conditions (see third
columns of Figures 8 and 9 for DFR and CDFR, respectively). Pa-
rameter values are presented in Table A5.
The failure of Submodels 1 and 2 to fit the behavioral data indicates

context drift is necessary at both encoding and retrieval. These simula-
tions also address the concern of overflexibility. A model of cognitive
processes that is overflexible and can fit any potential pattern of results
is not falsifiable and therefore is not useful as an explanation of human
cognition. The failure of these submodels demonstrates that the success
of the full model is not due to overflexibility. That is, the context drift
parameters which retrieved context theory predicts are central to mem-
ory formation are, indeed, necessary for model fitting.

Correlations in the Data and Model

Qualitatively, the fit of the temporal context model to both lag-
CRP and temporal bias curves in the data demonstrates that the

patterns of recall and contiguity in each condition are consistent with
the predictions of retrieved context theory. However, we have not yet
tested whether the fits are adequate. We can now do so using the meas-
ures of temporal bias. Given that the model must be able to capture
recall and the TCE simultaneously, we asked whether themodels’ over-
all recall and temporal factor scores (minus chance) fall within the
range of these measures in the real data.

For each condition, Figure 10 shows a 95% confidence ellipse
on the joint distribution of overall recall and temporal factor scores
(minus chance) in the actual data.5 For all conditions, the means of
the simulated data, based on the best-fit model to the SPCs and
lag-CRPs for each condition, are plotted as points. For the inciden-
tal conditions, we also plot the means for the full model fits to SPCs

Figure 9
Comparison of Temporal Context Model Simulations to the Data for the Incidental Continual Distractor Free Recall Condition

Note. The top row shows temporal bias curves, and the bottom row shows serial position curves (SPCs). Each column shows the best-fitting simu-
lated data for each version of the model. In the full model, presented in the first column, all parameters were allowed to freely vary. In the second
column, context drift during the encoding period was prevented by setting benc and bdistract = 0. In the third column, context drift during recall was
prevented by setting brec = 0. Open points represent simulated data based on the best-fit model. Error bars are bootstrapped 95% confidence
intervals.

5 A confidence ellipse is simply a two-dimensional 95% confidence
interval (CI) based on the variances of the two measures rotated by the
covariance of the two measures. Just as a univariate CI means that 95% of
exact replications would produce a confidence interval that includes the
true univariate mean, the confidence ellipse means that 95% of exact
replications would produce an ellipse that includes the bivariate mean.
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and temporal bias scores (as noted above, in fitting to temporal bias
scores, we considered only the theoretically critical incidental condi-
tions and did not fit the intentional conditions). Note that in all cases,
the model was not fit directly to the measures plotted here; temporal
factor scores for the model were calculated from data that was gener-
ated based on best-fit parameters to the SPC and lag-CRP or temporal
bias curves. Nonetheless, the model predictions fall within the condi-
tion’s confidence ellipse for every condition. That is, the model predic-
tions do not deviate significantly from the data.

Discussion

We tested whether the temporal context model, a specific com-
putational implementation of retrieved context theory, is

compatible with recent findings that the TCE is dramatically
reduced under incidental encoding. The theory assumes the TCE
results from fundamental properties of episodic memory, such that
temporal information is automatically encoded, and thus predicts a
TCE should be observed regardless of encoding intentionality. We
evaluated the ability of the model to account for the patterns
observed in the data based on three criteria: (a) there should be a
TCE under incidental encoding at multiple timescales, (b) the
model should be able to simultaneously fit both overall recall and
the TCE, and (c) the nature of the incidental TCE should be con-
sistent with the contextual dynamics mechanisms proposed by
retrieved context theory.

To address the first criterion, we tested for the presence of a
TCE under incidental encoding using lag-CRP curves. A TCE was
found in all groups, including when encoding was incidental and
study events were separated by a filled distractor. To address the
second criterion, we fit the temporal context model to both the
SPC and lag-CRP curves for each condition. The model fit was
consistent with the data. To address the final criterion, we devel-
oped novel analytical techniques designed to disentangle the influ-
ences of recency and context reinstatement. They demonstrated
that mechanisms beyond recency are involved in generating the
TCE in both intentional and incidental encoding, consistent with
the operation of a context reinstatement mechanism, as suggested
by retrieved context theory. Additional model simulations in
which the temporal context model was fit to this new measure of
context reinstatement provided evidence that drift during encoding
and context reinstatement at recall are critical components of
retrieved context theory’s ability to account for recall dynamics. In
sum, the observed TCE is consistent with retrieved context
theory’s prediction of a significant TCE regardless of encoding
intentionality, timescale, or the magnitude of recency.

Relation to Other Theories

We have argued that our results confirm several key predictions
of retrieved context theory and lend support to the claim that the
TCE is generated in part by a context reinstatement mechanism.
Some mechanisms proposed by other theories would have diffi-
culty producing a TCE under the conditions of the present experi-
ment, particularly under incidental encoding in CDFR. For
instance, any theory which assumes that the TCE is a result of
deliberate encoding strategies (see Healey, 2018; Healey et al.,
2019; Hintzman, 2016) is unable to explain a TCE of any size
under incidental encoding. That is, control processes alone do not
predict a TCE in incidental encoding.

Similarly, binding in a short-term buffer (e.g., Davelaar et al.,
2005; Raaijmakers & Shiffrin, 1981) cannot easily explain a TCE
in CDFR because the short-term buffer account predicts bonds
should form between items only when they co-occupy the buffer
(Phillips et al., 1967). A distractor task should fill the buffer
between each item presentation and thus prevent items from co-
occupying the buffer and forming temporal bonds. Thus, work
showing a TCE in CDFR has been taken as evidence against the
short-term buffer account (Howard & Kahana, 1999). Yet, because
previous work with CDFR has used intentional encoding, one could
argue that the use of deliberate control processes limits the effec-
tiveness of the distractor task and allows items from adjacent se-
rial positions to co-occupy the buffer. For example, the distractor

Figure 10
Confidence Ellipses on the Mean of the Joint Distribution of
Overall Recall and Temporal Contiguity With Model Predictions

Note. For the actual data, we show 95% confidence ellipses on the

mean of the joint distribution of overall recall and temporal factor (minus

chance). For the model, we show the means of the same variables from

the simulated model data as a point for each condition. The means for

the model fits to the SPCs and lag-CRPs of each condition are presented

as solid points. The means for the model fits to the SPCs and temporal

bias scores for the incidental conditions are presented as open points.

Chance for temporal factor scores was determined by calculating tempo-

ral factor scores for each of 100 random permutations of the order of

recalls and getting the average of this distribution. The r value above

each ellipse is the Pearson correlation between recall probability and the

temporal factor minus chance scores for that condition.
* Indicates that the correlation is significant at a , .05.
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may not be sufficiently demanding and therefore not fully push
previously studied items out of the buffer or prevent rehearsal. Or
even if we assume the distractor is sufficiently demanding and it is
impossible to rehearse during the distractor, a participant may still
strategically use part of an item’s presentation time to rehearse
previous items. However, in our study, a TCE was observed in
CDFR when participants were unaware their memory would be
tested and thus had no reason to engage in such control processes.
Although our findings are consistent with retrieved context

theory and seem quite inconsistent with some proposed contiguity-
generating mechanisms, it is important to note that our findings do
not uniquely support retrieved context theory. Other models of ep-
isodic memory may also be able to account for these results. A
model with separate short and long-term memory stores may not
be able to account for these findings with a short-term buffer
mechanism but can nonetheless account for the ubiquity of the
TCE if its implementation of long-term memory includes contex-
tual dynamics similar to those in retrieved context theory (as many
dual-store models do, e.g., Davelaar et al., 2005; Lehman &
Malmberg, 2013; Mensink & Raaijmakers, 1989). Our results sim-
ply indicate that dual-store models’ ability to explain the TCE is
not dependent on the short-term memory store. In addition, models
that include a representation of time, such as the scale-independent
memory, perception, and learning model (SIMPLE; Brown et al.,
2007) or a hierarchical chunking mechanism (Farrell, 2012), may
be consistent with the presence of the TCE in both incidental and
intentional encoding and the observed timescale similarity. How-
ever, detailed simulations would be required to determine if such
models can quantitatively fit the observed patterns.

Implications for Retrieved Context Theory

Our focus here has been whether the retrieved context theory is
compatible with the nature of the TCE under incidental encoding.
Specifically, does the small size of the TCE falsify the theory’s
predictions? We have shown that it does not. A model based on
retrieved context theory was able to simultaneously generate a
small TCE and substantial recall for both short (DFR) and longer
(CDFR) timescales. These model fits to SPCs and lag-CRPs still
left open the possibility that only the recency mechanism operates
in recall following incidental encoding and not the context reinstate-
ment mechanism that is the heart of the theory—this would have
severely limited the explanatory scope of retrieved context theory.
We tested this with temporal bias curves and temporal factor scores,
which eliminate the influence of factors such as recency on the
TCE and found that mechanisms beyond recency are involved in
the generation of the TCE in both intentional and incidental encod-
ing. Moreover, with a series of model fits to temporal bias scores,
we demonstrated that context drift was necessary during encoding
and context reinstatement was necessary during retrieval for the in-
cidental conditions. Overall, our findings suggest that the memory
system naturally encodes information about temporal order and that
retrieved context theory provides a good description of the nature
of that information. But some open questions remain.
In our simulations, we used a search algorithm to determine

how to parameterize the model for conditions that differed in their
level of temporal contiguity. How do participants adapt to differ-
ent task conditions? We suggest that control processes are critical
in determining the degree to which temporal information is

encoded and how it influences recall, perhaps by tuning the param-
eters of the memory system based on task instructions.

Control Processes Can Increase the TCE

In support of this idea, there is evidence that participants who
are more likely or more able to engage in control processes display
a greater TCE, with more pronounced forward asymmetry, than
other participants in typical free recall tasks. Spillers and Uns-
worth (2011) administered a free recall test to participants with
high versus low working memory scores and found that partici-
pants with high working memory scores displayed a larger TCE
with greater forward asymmetry than the low working memory
group; this difference was particularly pronounced at lag = þ1.
Cognitive aging, which is known to impair cognitive control
(Hasher et al., 2007; West, 1996) has a similar effect on the TCE:
The TCE is smaller and more symmetric for older compared with
younger participants (Diamond & Levine, 2019; Healey &
Kahana, 2016; Kahana et al., 2002). Moreover, participants with
clinical conditions that can impact cognitive control, such as schiz-
ophrenia (Polyn et al., 2015; Sahakyan & Kwapil, 2018) or high
trait worry (Pajkossy et al., 2017), often have a reduced TCE com-
pared with controls (for an example of a clinical condition increas-
ing the TCE, see Gibson et al., 2019).

These patterns of differences in temporal contiguity, particularly
for lag = þ1, parallel what we observed here in the incidental
encoding conditions, where the TCE was stronger and the forward
asymmetry was more pronounced in the intentional than incidental
encoding conditions. Once the influence of recency in our data
was accounted for using temporal bias scores, the most pro-
nounced difference between the intentional and incidental condi-
tions was at the lag = þ1 (see Figure 7). A similarly pronounced
difference in asymmetry is also present in the lag-CRPs of well-
practiced participants from archival data in Figure B1, where the
lag = þ1 transitions are much more likely than any other lags.

In all these cases, including the present data, participants with a
greater likelihood of engaging control processes, either due to task
demands or individual differences, displayed this strong bias for
þ1 lags. That is, high-control participants utilize temporal information
to a greater degree and, as a result, display a larger TCE. This is
consistent with individual differences studies that have found a
positive correlation between temporal contiguity and both overall
recall and measures of cognitive ability (Healey et al., 2019;
Sederberg et al., 2010; Spillers & Unsworth, 2011). Indeed, there
is evidence that both the size of the TCE and the degree of for-
ward asymmetry account for unique variance in recall ability for
recall of autobiographical memories.

Control Processes Can Also Decrease the TCE

However, these studies where high cognitive control is linked to
a strong TCE all involve cases in which remembering and using
temporal information facilitates task performance. When remem-
bering temporal information could actually be detrimental to per-
formance, the relationship between high cognitive ability and the
use of temporal information may be reversed. For example, Osth
and Fox (2019) found the TCE was absent for a paired associate
recognition task in which utilizing temporal information would
lead to impaired task performance (but see Davis et al., 2008).
Here too, individual differences influence the effects of task: Older
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adults, who likely have less ability to inhibit the influence of tem-
poral information, do show evidence of a TCE in a paired associ-
ates task (Campbell et al., 2014). In free recall tasks designed to
merely shift participants’ attention away from utilizing temporal
information, participants also display a smaller TCE. Hong et al.
(2019) found that combining multiple factors that tend to reduce
the usefulness of temporal information, such as testing participants
on a long list with semantic associations, can eliminate the TCE.
Similarly, when Healey and Uitvlugt (2019) modified free recall
instructions to ask participants to focus on similarities in meaning
between items rather than the order of items during study, they
found the TCE was reduced to near zero. In addition, the correla-
tion between the strength of the TCE and overall recall was much
smaller in standard lists composed of relatively unrelated words
when participants were instructed to focus on semantic similar-
ities. When lists were composed of related words, the correlation
between recall and the TCE actually was negative.
We observed a similar pattern in our results: The correlations

between recall and the TCE (see Figure 10) were significantly
higher for intentional encoding than for incidental encoding for
DFR (Fisher’s z = 3.95, p , .001) and CDFR (Fisher’s z = 6.75,
p, .001). In both cases, decoupling of recall from temporal conti-
guity occurred in situations where participants were not intention-
ally using temporally-based control processes.
In summary, when temporal cues are unhelpful or detrimental

to performance, control processes may diminish the TCE, and
those with stronger control processing may display a smaller TCE.
However, for tasks where the use of order information tends to
improve performance, participants with the strongest ability to
engage in control processes typically do utilize temporal informa-
tion to guide recall, whereas those with impaired cognitive control
make less use of temporal information, resulting in a lower TCE.
This suggests that incorporating control processes into retrieved
context theory is an important next step in theory development.

Conclusions

The results of this study support the retrieved context theory
account of episodic memory and temporal contiguity. Consistent
with the predictions of retrieved context theory, a significant TCE
was observed, regardless of encoding intentionality or the time-
scale of item presentation. A model based on the theory was able
to simultaneously fit patterns of high overall recall but modest
temporal contiguity in the data. Finally, we demonstrated that the
observed temporal contiguity was not a result of recency alone,
consistent with the theory’s qualitative claim. By fitting con-
strained submodels, we demonstrated that context drift during
recall as a result of context reinstatement, as well as context drift
during encoding, are a critical components of memory search. A
notable observation, however, is the difference in the size and
shape of the TCE between encoding conditions. Specifically, par-
ticipants in the intentional encoding conditions tended to have a
higher probability of making jlagj ¼ 1 transitions.
The fact that the TCE is larger under intentional encoding may

be due in large part to the use of strategic control processes to tune
parameters of the memory system. A reduced TCE and a
decreased correlation between overall recall and the TCE is gener-
ally observed when capacity for engaging in control processes is
impaired, such as when participants are unaware their memory

will be tested, they have cognitive impairments, or they are
instructed to use an alternate strategy. Considering control proc-
esses as a parameter tuning mechanism may improve the ability of
retrieved context theory to explain a range of findings.
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Appendix A

Model Details

There are many models based on retrieved context theory
(e.g., Healey & Kahana, 2016; Howard & Kahana, 2002;
Lohnas et al., 2015; Polyn et al., 2009; Sederberg et al., 2008).
All share the underlying mechanisms of context drift and rein-
statement. Here, we describe the implementation used in the
current article, a version of the temporal context model
(Howard & Kahana, 2002; Sederberg et al., 2008).

Model Structure

In the model, two types of cognitive representations inter-
act: the feature representation (F), a high-dimensional space in
which the features of the current list item are activated, and the
context representation (C), a corresponding space in which the
current state of context is activated. Activation of specific items
or contexts within each of these representational spaces is
defined as a vector, (f) and (c) respectively. These vectors have
one element for each list item (12 items for the current study),
one element for each delay period (one for the DFR and 12 for
the CDFR conditions), and one element to represent the state
of context prior to presentation of the first item.

Each association matrix is a weighted sum of a preexperi-
mental component (MFC

pre and MCF
pre) that reflects longstanding

semantic relationships and an experimental component (MFC
exp

and MCF
exp) that reflects new learning that occurs during the

experiment. Because we were not interested in studying seman-
tic associations here and because the lists were generated ran-
domly without consideration of semantics, we followed the
practice of previous work and initializedMFC

pre andM
CF
pre as iden-

tity matrices (i.e., items are associated only with their own con-
text element and vice versa).

Encoding

Studying an item from serial position i activates the corre-
sponding features, fi, which in turn retrieve the context states to
which those features have previously been associated:

cINi ¼ MFCfi
jjMFCfijj : (2)

This retrieved context, cINi , which is normalized to have a
length of one, is incorporated into the context representation by
adding it to the current context vector ci�1. The context vector
is continuously maintained at unit length. Therefore, when a

new state of context is added to the existing state, the two vec-
tors, ci�1 and cINi must be scaled so their sum has a length of
one:

ci ¼ qici�1 þ bcINi : (3)

where b is a model parameter governing how quickly context
changes, and qi is chosen such that jjcijj ¼ 1:

qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2½ðci�1 � cINi Þ2 � 1�

q
� bðci�1 � cINi Þ: (4)

Because context is always of unit length it can be thought of
as a point on the surface of a (hyper) sphere, with b determining
how far along the surface of the sphere it travels with each
newly presented item and cINi determining the direction of travel.
During encoding, b is set to an encoding-specific value, benc.

At the start of an experimental session, the experimental
associations are initialized to zero. As each new item is
presented, new experimental associations are formed, both
between the item’s feature representation and the current
state of context (stored in MFC

exp) and between the current
state of context and the item’s feature representation (stored
in MCF

exp). These associations are formed according to a
Hebbian outer-product learning rule:

DMFC
exp ¼ ci�1f

>
i

DMCF
exp ¼ fic>i�1/i,

(5)

ϕi simulates increased attention to beginning-of-list items, pro-
ducing a primacy effect, by scaling the magnitude of context-
to-feature associations across the list:

/i ¼ /se
�/dði�1Þ þ 1, (6)

where ϕs and ϕd are model parameters. See Sederberg et al.
(2008) for a more complete discussion.

Newly formed experimental associations are incorporated
with preexperimental associations. The balance between new
and existing associations is controlled by parameters cFC and
cCF:

(Appendices continue)
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MFC ¼ ð1� cFCÞMFC
pre þ cFCM

FC
exp

MCF ¼ ð1� cCFÞMCF
pre þ cCFM

CF
exp:

(7)

For any distractor, whether it occurs between items or at the
end of the list, the context is updated in the same way context
was updated during encoding (Equation 4), but with a different
drift rate parameter, bdistract.

Recall

The recall period proceeds as a series of retrieval attempts
closely following the implementation used by Morton and
Polyn (2016). At each retrieval attempt, the model either suc-
cessfully retrieves an item or fails. After a failure, no further re-
trieval attempts are made. The probability of failing to retrieve
an item (i.e., stopping recall) starts out low for the first recall
attempt (i.e., output position) and increases exponentially with
each output position:

Pðstop, jÞ ¼ hse
jhr : (8)

where j is the output position, hs is a parameter which deter-
mines the scaling of the exponential function, and hr is a pa-
rameter which controls the rate at which the probability of
stopping approaches 1.

If recall does not stop at a particular output position, the cur-
rent contextual state is used to cue retrieval via the MCF

associations:

a ¼ MCFct, (9)

The resulting a gives the degree of support, or activation,
for each item in the list. These activations are then used to
assign each item a probability of being selected for recall
according to:

Table A1
Best-Fit Parameter Values for the Fits of the Temporal Context Model to the Data of Each
Condition

Parameter Intentional DFR Incidental DFR Intentional CDFR Incidental CDFR

ϕs 9.521 6.325 8.989 10.854
ϕd 1.024 5.384 0.872 4.818
cfc 0.158 0.093 0.291 0.988
ccf 0.569 0.288 0.775 0.814
benc 0.860 0.944 0.769 0.945
brec 0.814 0.316 0.319 0.010
bdistract 0.367 0.192 0.435 0.701
hs 0.402 0.512 0.408 0.281
hr 0.035 0.009 0.055 0.140
s 0.193 0.113 0.554 0.220
RMSD 0.0081 0.0097 0.0095 0.0093

Note. The model was simultaneously fit to the serial position curve and lag-conditional response probability
curve. DFR = delayed free recall; CDFR = continual distractor free recall; RMSD = root-mean-square
deviation.

Table A2
Average (SEM in Parentheses) Best-Fit Parameter Values for 30 Fits of the Temporal Context Model to the Data of Each Condition

Parameter Intentional DFR Incidental DFR Intentional CDFR Incidental CDFR

ϕs 9.827 (0.447) 2.052 (0.367) 10.457 (0.398) 12.125 (0.343)
ϕd 1.28 (0.051) 6.148 (0.451) 0.782 (0.016) 5.986 (0.421)
cfc 0.734 (0.009) 0.163 (0.017) 0.287 (0.020) 0.016 (0.002)
ccf 0.464 (0.040) 0.420 (0.042) 0.479 (0.042) 0.563 (0.062)
benc 0.227 (0.010) 0.132 (0.018) 0.320 (0.018) 0.786 (0.031)
brec 0.800 (0.025) 0.506 (0.033) 0.828 (0.024) 0.714 (0.031)
bdistract 0.910 (0.004) 0.930 (0.005) 0.715 (0.026) 0.735 (0.055)
hs 0.377 (0.009) 0.399 (0.013) 0.245 (0.008) 0.358 (0.019)
hr 0.047 (0.004) 0.054 (0.006) 0.049 (0.003) 0.108 (0.009)
s 0.155 (0.004) 0.110 (0.005) 0.529 (0.018) 0.231 (0.005)
RMSD 0.0086 (0.0301) 0.0101 (0.0291) 0.0106 (0.0394) 0.0101 (0.0444)

Note. The model was simultaneously fit to the serial position curve and lag-conditional response probability curve. DFR = delayed free recall; CDFR =
continual distractor free recall; RMSD = root-mean-square deviation.

(Appendices continue)
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PðiÞ ¼ ð1� PðstopÞÞ asiPN
k ask

, (10)

where s is a parameter that determines how sensitive the
model is to differences among items in level of support—
when s is large, the model strongly prefers the item with the

highest activation on a; when it is small, less well-supported
items have a greater chance of winning. In computing P(i),
each element of a is set to a minimum value of 10�7 to ensure
no item is assigned a zero-recall probability.

The recalled item’s representation is reactivated on the
feature layer, allowing the model to retrieve the contextual
state associated with the item. Context is updated using the
same mechanism used during the study period (separate pa-
rameters, benc, bdistract, and brec control the rate of context
drift during encoding, the distractor task, and retrieval).
This updated context is then used as a cue for the next
recall. The cycle of cue-recall-update context-cue continues
until the model fails to recall an item (Equation 8).

To fit the model for a given condition, we attempted to mini-
mize the root-mean-square deviation (RMSD) between the condi-
tion’s across-participant average in the actual data and the
model’s simulated data. There were k = 10 free parameters in this
model. At each generation, 3,000 simulated participants, each
with a different set of parameter values, studied and recalled three
lists. We ran this entire procedure 30 times for each condition.
The best fitting parameter values and the RMSD values across the
30 model fits for each condition are listed in Table A1. The aver-
age parameter values and standard error of the mean (SEM) across
the 30 model fits are presented in Table A2. To generate simulated
data for the figures, we used the best-fitting parameter sets to sim-
ulate recalls for 60,000 simulated participants per condition (each
studying one list).

Table A3
Best-Fit Parameter Values for the Fits of the Full Temporal
Context Model to the Serial Position Curve and Temporal Bias
Scores of Each Condition

Parameter Incidental DFR Incidental CDFR

ϕs 7.400 13.661
ϕd 8.311 12.571
cfc 0.529 0.041
ccf 0.614 0.959
benc 0.139 0.499
brec 0.393 0.797
bdistract 0.848 0.390
hs 0.436 0.116
hr 0.037 0.210
s 0.206 0.337
RMSD 0.030 0.0253

Note. DFR = delayed free recall; CDFR = continual distractor free
recall; RMSD = root-mean-square deviation.

Table A5
Best-Fit Parameter Values for the Fits of the Temporal Context
Model to the Serial Position Curve and Temporal Bias Scores of
Each Condition When Context Drift is Eliminated During Recall
by Setting brec = 0

Parameter Incidental DFR Incidental CDFR

ϕs 19.460 4.482
ϕd 5.831 8.339
cfc 0.411 0.571
ccf 0.804 0.302
benc 0.683 0.723
brec 0 0
bdistract 0.917 0.129
hs 0.373 0.442
hr 0.054 0.068
s 0.209 0.603
RMSD 0.0716 0.0616

Note. DFR = delayed free recall; CDFR = continual distractor free
recall; RMSD = root-mean-square deviation.

(Appendices continue)

Table A4
Best-Fit Parameter Values for the Fits of the Temporal Context
Model to the Serial Position Curve and Temporal Bias Scores of
Each Condition When Context Drift is Eliminated During
Encoding

Parameter Incidental DFR Incidental CDFR

ϕs 0.157 8.417
ϕd 1.395 1.953
cfc 0.866 0.670
ccf 0.016 0.022
benc 0 0
brec 0.264 0.163
bdistract 0.084 0
hs 0.119 0.087
hr 0.219 0.294
s 29.191 23.146
RMSD 0.085 0.177

Note. Context drift during encoding was eliminated for delayed free
recall (DFR) by setting benc, the parameter that controls the rate of context
drift during encoding, to zero. In continual distractor free recall (CDFR),
both bdistract and benc were set to zero to prevent any drift during or
between item presentations. RMSD = root-mean-square deviation.
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Appendix B

Temporal Bias Scores in Archival Data Sets

We applied the temporal bias analysis to data sets where a
strong TCE has been observed to show what temporal bias
curves look like in data with a typical TCE. In Figure B1, the
lag-CRP and temporal bias curve for two data sets are pre-
sented: the list length 15, 2-s presentation rate condition from
Murdock (1962) and the Penn Electrophysiology of Encoding
and Retrieval Study Experiment 1 (Healey et al., 2019). In both
of these data sets, the participants were well-practiced and as a
result display a typical lag-CRP, with particularly high scores
for lag = þ1 and lower scores for farther lags. When partici-
pants are experienced with a list learning task, they tend to
have a stronger TCE (Healey et al., 2019). As such, it is

unsurprising that the data sets represented in Figure B1 display
a TCE that is strong even without the influences of recency, as
evidenced by the strong bias for near lags in temporal bias
scores.

Received December 12, 2019
Revision received July 17, 2020
Accepted November 20, 2020 n

Figure B1
Lag Conditional Response Probabilities (Lag-CRPs) and Temporal Bias Scores in Archival Data Sets

Note. (A) Lag-CRP and (B) temporal bias curves for two large archival datasets. The black line represents data
from the list length 15, 2-s presentation rate condition of Murdock (1962). The gray line represents data from
Experiment 1 of the Penn Electrophysiology of Encoding and Retrieval Study (PEERS). Temporal bias scores
were calculated for each lag by counting the number of times a participant actually made a transition of that lag
and the number of times such a transition would be expected by chance. The expected count was determined by
permuting the order of the recalled items 500 times and counting how many times each lag occurred for each per-
mutation. Temporal bias is the difference between the actual count and average expected count, divided by the
average expected count. The dotted line for the temporal bias scores indicates a score of zero, where there is no
difference between the actual and expected counts. Error bars indicate bootstrapped 95% confidence intervals.
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