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Model Details

There are many implementations of the Retrieved Context family of models (e.g.,

Healey & Kahana, 2016; Howard & Kahana, 2002; Logan & Cox, 2021; Lohnas, Polyn, &

Kahana, 2015; Polyn, Norman, & Kahana, 2009; Sederberg, Howard, & Kahana, 2008) that

all share the underlying mechanisms of context evolution and reinstatement. Here, we

describe the implementation used in the current manuscript. Unless explicitly noted, the

Post-Encoding Pre-Production Reinstatement (PEPPR) and Backward-Walk models are

identical.

Model Structure

The model simulates an entire session of dual-list free recall that, following the

method of the Wahlheim, Ball, and Richmond (2017) experiment, included five blocks of

three trials (i.e., 15 total trials), with each block containing one trial from each of the three

recall conditions (i.e., recall only from List 1, recall only from List 2, or recall from either

List 1 or List 2). The presentation order of conditions was randomized within blocks. On

each trial, the model was presented with two 10-item study lists.

In the model, two types of cognitive representations interact: the feature

representation (F ), in which the currently presented item is activated, and the context

representation (C), in which the current state of context is activated. Each of these

representational layers is defined as a vector. For both models, the vectors have one

element for each item that will be studied during an experimental session: 15 trials each

with two 10-item lists for a total of 300 item representations. Both the PEPPR and

Backward-Walk models also have additional elements to represent the various events other

than item presentations that occur during the experiment and are thought to cause context

to drift. Both models have a "experiment start" element to represent the state of context at
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the beginning of the experiment. Both models also have "between-list disruption" elements

to represent the change in context induced by the task switch between the end of List 1

and the beginning of List 2: one unique element for each of the 15 trials. Similarly, both

models have "between-trial disruption" elements to represent the context drift associated

with the end of one trial and the beginning of the next, again with one unique element for

each of the 15 lists. In addition to these shared elements, the PEPPR model has two "List"

elements: one to represent the instruction to study/recall List 1 and one to represent the

instruction to study/recall List 2. These two List elements are "reused" on each trial,

simulating the potential for prior-trial interference. Thus, in total, the feature and context

vectors of the Backward-Walk model each have 300 + 1 + 15 + 15 = 331 elements, and the

vectors of the PEPPR model each have 300 + 1 + 15 + 15 + 2 = 333 elements.

A pair of Hebbian associative matrices connect the two vector representations:

features to context (MFC) and context to features (MCF ). Each association matrix is a

weighted sum of a pre-experimental component (MFC
pre and MCF

pre ) that reflects longstanding

semantic relationships and an experimental component (MFC
exp and MCF

exp ) that reflects new

learning that occurs during the experiment. Because we were not interested in studying

semantic associations, we followed the practice of previous work and initialized MFC
pre and

MCF
pre as identity matrices (i.e., items are associated only with their own context element

and vise versa).

Encoding

At the beginning of the simulated experiment, the "experiment-start" feature element

is fully activated as is the corresponding context element (i.e., the vectors have a 1 in that

position and 0 in all others). The model then proceeds to study List 1 of the first trial. For

the PEPPR model, study of List 1 entails first presenting the List 1 feature representation

and then presenting the feature representations of the List 1 items one at a time. For the

Backward-Walk model, which does not include list representations, study of List 1 simply
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entails presenting the list 1 items one at a time. During study, presenting any feature

representation, i, whether it is a List representation or an item representation, activates its

corresponding element on the feature vector producing a vector, fi, which is has a 1 at

position i and 0 at all other positions. fi in turn retrieves the context states to which it has

previously been associated:

cIN
i = MFCfi

||MFCfi||
. (1)

This retrieved context vector, cIN
i , which is normalized to have a length of 1, is

incorporated into the context representation by adding it to the current context vector

ci−1. The context vector is continuously maintained at unit length. Therefore, when a new

state of context is added to the existing state, the two vectors, ci−1 and cIN
i must be scaled

so their sum has a length of one:

ci = ρici−1 + βcIN
i , (2)

where β is a model parameter governing how quickly context changes, and ρi is

chosen such that ||ci|| = 1:

ρi =
√

1 + β2[(ci−1 · cIN
i )2 − 1]− β(ci−1 · cIN

i ). (3)

Because context is always of unit length, it can be thought of as a point on the

surface of a hypersphere, with β determining how far along the surface of the sphere it

travels with each newly presented item and cIN
i determining the direction of travel.

The value of β used when updating context depends on the type of representation

being presented. For the PEPPR model, when a list element is presented, a parameter,

βPEPPRencoding
, is used. For both models, when a list item is presented a parameter,

βencoding, is used.

Once all List 1 items have been studied, the "between-list disruption" element for the
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current trial is presented, using a different parameter, βbetweenlists
, to allow for different

rates of context change between items versus lists. The model then begins studying List 2.

For the PEPPR model, this begins by presenting the List 2 feature representation, using

βPEPPRencoding
to update context. Both models then study the List 2 items one at a time,

using βencoding when updating context.

During study, as each new list item (and for PEPPR, each List representation) is

presented, new experimental associations are formed, both between the item’s feature

representation and the current state of context (stored in MFC
exp ) and between the current

state of context and the item’s feature representation (stored in MCF
exp ). These associations

are formed according to a Hebbian outer-product learning rule:

∆MFC
exp = ci−1f>i , (4)

∆MCF
exp = fic>i−1φj.

Following Sederberg et al. (2008), φj simulates increased attention to beginning-of-list

items by scaling the magnitude of context-to-feature associations across the list, producing

a primacy effect or gradient:

φj = φse
−φd(j−1) + 1, (5)

where φs and φd are model parameters and the index j is the serial position within

the current list. Note that because j indexes the serial position within the current list (i.e.,

j = 1 for the first item of each list studied across the simulated experiment), the primacy

gradient "resets" at the beginning of each list within each trial. For simplicity, the PEPPR

version of the model uses the value of j = 1 twice per list: once when presenting the List

element and again when presenting the actual first item in the list.

Newly formed experimental associations are incorporated with pre-experimental
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associations. The balance between new and existing associations is controlled by the

parameters γFC and γCF :

MFC = (1− γFC)MFC
pre + γFCM

FC
exp , (6)

MCF = (1− γCF )MCF
pre + γCFM

CF
exp .

Recall

Pre-Production Reinstatement. For the PEPPR model, recall begins by

re-presenting the appropriate List representation. For "recall only from List 1" trials, the

List 1 feature representation is represented. For "recall only from List 2" trials, the List 2

representation is represented. For "recall from either List 1 or List 2" trials, we found that

the model could fit the summary data in Figure 2 of the main text quite well whether we

represented both the List 1 and List 2 representation or simply represented just the List 2

representation. Therefore, we choose to present just the List 2 representation to reduce the

computational demands of the later simulations of detailed recall dynamics. In all

conditions, the presented list element is activated on the feature layer, which, via

Equation 1, activates a state of context that we can call cIN
PEPPR. Because the List element

had been active when the items of that list were studied, learning has occurred and cIN
PEPPR

will include activation not only of the context representation of the List element but

potentially also activation of the context representations of items from the current-trial

target list and possibly items from the corresponding lists of prior-trials (i.e., potential

intrusions). cIN
PEPPR is then incorporated with the prior context, ct (i.e., the context at the

end of the study phase) via Equation 2 using the parameter βPEPPRreinstatement
to determine

the balance between cIN
PEPPR and ct. The updated context is then used as the cue for the

first retrieval attempt as described below. Higher values of βPEPPRreinstatement
mean the

updated context will provide a stronger cue for items from the target list.
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For the Backward-Walk model, the List representation is not re-presented, and

context is not updated. Instead, ct (i.e., the context at the end of the study phase) is used

as the cue for the first retrieval attempt.

Sampling. As described in the main text, the model first samples candidate

outputs and then screens them for possible intrusions. In the past, CMR has used a set of

competitive leaky accumulators (Healey & Kahana, 2016; Lohnas et al., 2015; Polyn et al.,

2009) to simulate the sampling process. Here, we follow Morton and Polyn (2016) and use

a simple Luce choice rule to reduce computational demands (see also, Gibson, Healey, &

Gondoli, 2019; Mundorf, Lazarus, Uitvlugt, & Healey, 2021). Specifically, the sampling

process proceeds as a series of sampling attempts, closely following the implementation

used by Mundorf et al. (2021). At each attempt, the model either successfully retrieves an

item or fails. After a failure, no further sampling attempts are made. The probability of

stopping recall (i.e., failing to sample an item) starts out low for the first recall attempt

(i.e., output position) and increases exponentially with each output position:

P (stop, j) = θse
jθr , (7)

where j is the output position, θs is a parameter which determines the scaling of the

exponential function, and θr is a parameter which controls the rate at which the

probability of stopping approaches 1.

If recall does not stop at a particular sampling attempt, the current contextual state

is used to cue retrieval via the MCF associations:

a = MCFct, (8)

where ct is the state of context at the start of the recall period. As described above,

the key difference between the PEPPR and Backward-Walk models is whether the

appropriate List representation was incorporated into ct via Pre-Production Reinstatement.
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In either case, the resulting vector, a, gives the degree of support, or activation, for each of

the 300 list items in the model’s memory. For simplicity, we remove any items from a that

have not yet been presented, as they will have zero activation. We also exclude from a any

items that have already been recalled to avoid the complexity of modeling inhibition of

repetitions (but see Lohnas et al., 2015, for how such inhibition can be modeled in CMR2).

These exclusions result in a vector a′ of items that are available for recall, which is then

used to assign each recall-able item a probability of being sampled according to:

P (i) = (1− P (stop)) a′τi∑N
k a′τk

, (9)

where τ is a parameter that determines how sensitive the model is to differences

among items in level of support—when τ is large, the model strongly prefers the item with

the highest activation on a′; when it is small, less well-supported items have a greater

chance of wining. Note that in computing P (i), each element of a′ is set to a minimum

value of 10−7 to ensure no item is assigned a zero sampling probability.

Editing Process. Before the sampled item is actually output by the model, it

undergoes a post-production editing phase, consistent with the observation that people

often report thinking of items that they do not overtly recall during free recall experiments

(Keppel, 1968; Wixted & Rohrer, 1994). In the first step of the editing process, the

sampled item’s representation is reactivated on F , allowing the model to retrieve the

contextual state associated with the item via Equation 1. Next, the model compares the

context representation retrieved by the candidate item, cIN, with the currently active

context representation, ct, by taking their dot product:

u = cIN · ct. (10)

The value of u is then used to make a decision about whether the sampled item is

from the target list. How this decision is made depends on which list is being targeted and
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the model (PEPPR versus Backward-Walk). For PEPPR, the context of the targeted list

has already been reinstated, so if u is greater than a threshold, umin, the model assumes

the sampled item is from the target list and outputs the item. If instead u < umin, the

model rejects the item and does not output it.

When targeting the most recent list (List 2) or both lists, the Backward-Walk model

uses the same rejection rule as described for PEPPR in the previous paragraph. However,

when the Backward-Walk model is targeting the non-recent List 1, it uses two thresholds

to distinguish between items that are too recent (likely intrusions from List 2) and items

that are not recent enough (likely intrusions from prior trials). That is, if u > umax, the

model decides the item is a List 2 intrusion and rejects it. If u < umin, the model decides it

is an intrusion from an earlier trial and rejects it. If instead, umin < u < umax, the sampled

item is accepted. Once a sampled item is accepted, the Backward-Walk model assumes it

has accessed the target list and switches back to the standard rejection rule for subsequent

sampling attempts.

For all models and conditions, once an item is sampled and the editing decision has

been made, context is updated by combining cIN and ct via Equation 2 with the balance

between the two determined by a parameter βrecall. That is, even rejected items are allowed

to drive context change. This is critical to the Backward-Walk model’s ability to iteratively

sample progressively less recent items, as the updated context is then used as a cue for the

next recall. The cycle of cuing with context, sampling items, editing for intrusions,

updating context, and cuing again continues until the model fails to sample an item

(Equation 7).

Once the recall period for one trial ends, the "between-trial disruption" element for

the current trial is presented using the parameter βbetweentrials
to update context, and the

next trial begins, following the same study/recall equations described above. It is

important to note that because the model simulates an entire session of 15 trials,

associations formed in prior trials can interfere during recall on the current trial. In
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particular, for the PEPPR model, as the experiment progresses, more and more prior-trial

items become associated with the List 1 and List 2 representations.

Fitting Algorithm

We fit the models by minimizing the root-mean-square deviation (RMSD) difference

between the model predictions and data using a differential evolution genetic algorithm

(Storn & Price, 1997) as implemented in SciPy (Virtanen et al., 2020). The cross-over

probability was set to 0.9 for all generations, and at the beginning of each generation, the

differential weight was set to a random value between 0.5 and 1.75. Given that we argued

in the main text that the Backward-Walk model was not capable of fitting the data, it was

critical that we explored the parameter space of each model extensively enough to find a

good-fitting parameter set, if one exists. However, due to the large number of parameters

in each model (24 for PEPPR and 23 for Backward-Walk), the spaces are quite large and

exploring them exhaustively is computationally prohibitive. Therefore, we designed an

algorithm to maximize exploration of the space with the available resources. Specifically,

we applied the genetic algorithm iteratively to first provide a very broad search of the

parameter space to identify local minima and then to provide a more fined grained search

to attempt to find the global minimum. In the first iteration, the algorithm started with an

initial generation of 256 parameter sets evenly distributed across the parameter space using

the Sobol method. It then was allowed to run further generations of 256 parameter sets for

7 days, with each generation running its sets in parallel on 128 processing cores. For each

parameter set, 60 subjects were simulated (i.e., twice the number of actual participants in

the Wahlheim et al., 2017, experiment). The best-fitting 128 parameter sets from this

initial 7-day run were then used as the starting population for a second 7-day run in which

each generation included 128 parameter sets, again run in parallel on 128 processing cores,

with 120 subjects being simulated for each parameter set to reduce the error variance in

estimating the parameter set’s predictions so as to better distinguish among well-fitting
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parameter sets. We then used the best-fitting parameter set from this final run to produce

the simulated data presented in the main text. This entire algorithm was applied 4 times:

once for each model to fit the summary data in Figure 2 of the main text and once for each

model to fit the recall dynamics data in Figure 6. Consequently, the simulations took 8

weeks to run on 128 processors, which is equivalent to 19.96 years of processing

time—approximately 5 years per fit. The algorithm allowed us to find excellent fits to the

Figure 2 data for both the PEPPR and Backward-Walk models, as well as an excellent fit

to the Figure 6 data for the PEPPR model. However, it was unable to find a good-fitting

parameter set for the Backward-Walk model to the Figure 6 data. While it is impossible to

rule out the possibility that a good-fitting parameter set exists for the backward-walk

model, it seems quite unlikely.

Fitted Parameters

Table 1 provides the best-fitting parameter values used to generate the simulated

data reported in the main text. The values here are rounded to 3 decimal places. The

actual values with full precision are available in the OSF project for the paper (see the

main text for a link). The columns labeled "Figure 2" contain the best-fitting parameter

values for each model when fitting the overall recall level data in Figure 2C from the main

text. These values were used to generate simulated data for Figures 2A, 2B, 5A, and 5B.

The columns labeled "Figure 6" contain the best-fitting parameter values for each model

when fitting Figure 6C and F from the main text. These values were used to generate

simulated data for the first and second columns of Figures 6 and 7. In all cases, the model

was constrained to use a common set of encoding parameters for all conditions. However,

retrieval parameters, with the exception of βPEPPRreinstatement
, were allowed to differ among

conditions. βPEPPRreinstatement
was constrained to be the same for all conditions to avoid

giving the PEPPR model excessive flexibility. In other words, we assumed that the

reinstatement of list context is equally effective regardless of which list is being targeted.
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Table 1
The best-fitting parameter values for each model when fitted to the data in Figures 2 and 6.

Figure 2 Figure 6
Parameter Backward-Walk PEPPR Backward-Walk PEPPR

Encoding Parameters Common to All Test List Conditions
φs 6.200 44.312 6.492 0.005
φd 47.066 0.025 35.474 32.366
γfc 0.735 0.877 0.473 0.939
γcf 0.077 0.408 0.687 0.985
βencoding 0.794 0.596 0.834 0.199
βbetweenlists

0.635 0.234 0.285 0.621
βbetweentrials

0.692 0.949 0.851 0.997
βPEPPRencoding

– † 0.432 – † 0.736
βPEPPRreinstatement

– † 0.947 – † 0.851
Retrieval Parameters for Recall List 1 Condition

θs 0.014 0.003 0.001 0.002
θr 0.013 0.377 0.107 0.291
τ 11.375 57.561 91.664 82.095
βrecall 0.571 0.665 0.761 0.048
umin 0.881 0.651 0.824 0.894
umax 0.725 – † 0.332 – †

Retrieval Parameters for Recall List 2 Condition
θs 0.027 0.026 0.245 0.331
θr 0.145 0.148 0.704 0.416
τ 15.031 77.106 68.465 86.837
βrecall 0.859 0.567 0.787 0.323
umin 0.311 0.121 0.297 0.760

Retrieval Parameters for Recall Both List Condition
θs 0.005 0.007 0.233 0.633
θr 0.056 0.011 0.358 0.786
τ 0.765 10.253 33.537 29.186
βrecall 0.908 0.813 0.841 0.409
umin 0.589 0.618 0.149 0.202
† As discussed in the text, this parameter is used by one model and not the other.


