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Abstract
Longitudinal designs must deal with the confound between increasing age and increasing task experience (i.e., retest effects).
Most existing methods for disentangling these factors rely on large sample sizes and are impractical for smaller scale
projects. Here, we show that a measurement burst design combined with a model of retest effects can be used to study age-
related change with modest sample sizes. A combined model of age-related change and retest-related effects was developed.
In a simulation experiment, we show that with sample sizes as small as n = 8, the model can reliably detect age effects of the
size reported in the longitudinal literature while avoiding false positives when there is no age effect. We applied the model to
data from a measurement burst study in which eight subjects completed a burst of seven sessions of free recall every year for
5 years. Six additional subjects completed a burst only in years 1 and 5. They should, therefore, have smaller retest effects
but equal age effects. The raw data suggested slight improvement in memory over 5 years. However, applying the model
to the yearly-testing group revealed that a substantial positive retest effect was obscuring stability in memory performance.
Supporting this finding, the control group showed a smaller retest effect but an equal age effect. Measurement burst designs
combined with models of retest effects allow researchers to employ longitudinal designs in areas where previously only
cross-sectional designs were feasible.
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Introduction

Inferring age-related cognitive change from cross-sectional
designs is fraught with well-known inferential problems
(Baltes 1968). Longitudinal designs, in principle, provide a
more direct measure of within-individual cognitive change
and are therefore an important complement to cross-
sectional research (Hoffman et al. 2011). But longitudinal
studies generally introduce retest effects (e.g., practice
effects), which can obscure age-related effects (Salthouse
2016; Hoffman et al. 2011).
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Techniques have been developed to disentangle age and
retest effects in typical longitudinal designs where each
outcome variable is measured once per subject at each
wave of the study (e.g., Salthouse 2016; Nilsson 2003).
This typical longitudinal design is not appropriate, however,
when the outcome variable of interest cannot be reliably
assessed with a single measurement from each subject.
For example, episodic memory performance is notoriously
variable within a single individual due to endogenous
fluctuations over time in the processes that support
memory function (Kahana et al. 2018); therefore, a single
measurement does not provide an accurate assessment of
a subject’s ability. This within-subject variability can be
overcome by collecting multiple measurements from each
subject spread across several days of testing sessions.

In our cross-sectional work on age-related memory
impairment (Healey and Kahana 2016), we have taken
exactly this multi-session approach by having subjects com-
plete 112 lists of the free recall task spread over seven
sessions. Extending this multi-trial design to a longitudinal
study would constitute what has been termed a “measure-
ment burst” design (Nesselroade 1991; Sliwinski 2008):
A burst is composed of multiple tests separated by a
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short time (e.g., days) with successive bursts being sepa-
rated by a longer time (e.g., a year). This intensive testing
makes it impractical to undertake a longitudinal study with
a sample large enough to apply most existing methods of
estimating retest effects.

Sliwinski et al. (2010) introduced a method to separate
age and retest effects in measurement burst designs. This
method involves modeling changes in performance across
retests as the combined output of a function of age and a
non-linear function of number of retests. This model allows
researchers to rigorously disentangle age effects from retest
effects. To date, it has been applied primarily to working
memory and processing speed tasks tasks where the primary
measure is reaction time, such as digit comparison and
n-back (e.g., Munoz et al. 2015). We develop a closely
related model that can be used for tasks where the primary
measure is accuracy. As a test case, we use episodic memory
performance, but the model could be applied to many other
situations including reasoning and decision making. We will
explore how the performance of the model (i.e., type I and II
error) is influenced by anticipated effect size, sample size,
and number of measurements per burst. This allows us to
provide researchers a principled way to make design choices
regarding these factors—a missing element in the existing
literature on measurement burst designs.

Model-Based Analysis of Age and Retest Effects

Several existing models have been applied to quantify the
accumulation of retest effects in multi-session studies, such
as those described in Anderson et al. (1999) and in Sliwinski
et al. (2010). Both of these models provided good fits and
similar results when applied to our data during preliminary
analyses. We selected the Anderson et al. (1999) model
because it includes a single term that allows retest effects
to accumulate when sessions are close together in time (i.e.,
within a measurement burst) and then dissipate when there
are long gaps between sessions (i.e., in the months between
measurement bursts).

In our adaptation of this model, memory performance on
day i (i = 1 for the first session), denoted by pi , is a func-
tion of both the linear effects of age-related episodic me-
mory change and the power-law effects of test experience:

pi = β0 + βage(Age) +
(

βretest − βretest∑i
j=1t

−d
j

)
+ εi . (1)

The model includes four free parameters: β0, βage, βretest ,
and d . β0 is an intercept which represents the subject’s
performance in the absence of any age-related change or
test experience. βage is the amount by which performance
changes daily as a result of aging. Performance on day
i improves as a result of previous test experience up to
a maximum retest benefit of βretest . However, the benefit

from a session on any previous day, j , dissipates as the
amount of time separating days j and i increases, with the
exact benefit given by t−d

j , where t = 1 + i − j (i.e.,
how far back in time day j is), and d modulates the rate at
which retest effects dissipate with the passage of time. t−d

j is
calculated for the session on day i, and all previous sessions
are then summed—the larger the sum, the closer the actual
retest effect is to the maximum of βretest . To summarize
the determinants of the total retest effect, it increases as
the number of previous sessions increases, it decreases as
the amount of time separating previous sessions from day i

increases, and it decreases as the value of the d parameter
increases. Finally, an error term, εi , captures the deviation
of the model from the data.

We begin by fitting this model to the initial results
of a measurement burst longitudinal study in which eight
subjects completed seven sessions of the free recall task
each year for 4 to 5 years. Next, we report a series of
simulations which show that the model provides over 80%
power to detect realistically sized age effects with sample
sizes as small as n = 8. Finally, we apply the model to a
second group of subjects who received less task experience
(only two bursts of free recall) but had aged by the same
amount. The results show that the model is sensitive to
differences in level of retest experience.

Method

The data are from the Penn Electrophysiology of Encoding
and Retrieval Study (PEERS, Healey and Kahana 2014,
2016; Healey et al. 2014; Lohnas and Kahana 2013, 2014;
Miller et al. 2012), an ongoing project aiming to assemble
a large database on memory ability in older and younger
adults. The full methods of the PEERS study, which include
some manipulations that we do not consider in this paper,
are described in the supplemental materials. Here, we focus
on the details relevant to our analyses.

Subjects

Original Cross-Sectional PEERS Sample

The full PEERS older adult sample includes 39 individuals
who completed an initial cross-sectional study (Healey
and Kahana 2016). All subjects were recruited from the
Philadelphia area. Potential subjects were excluded if they
suffered from any medical conditions or regularly took
medications that might affect cognitive performance.

Yearly-Testing Sample

Twelve older adults from the original sample were recruited
for annual testing. The age of subjects ranged from 62 to
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73 years (M = 66.87) at the start of the experiment. The
subjects took 1.6 – 19.0 weeks (M = 3.9) to complete
each burst. Four of these subjects have been excluded from
the current analyses due to insufficient data (three subjects
decided to leave the study, and one has passed away). Of
the eight subjects (three male, five female) included in the
present analyses, two have completed four annual waves
of testing and six have completed five waves. Subjects
were required to have a high school diploma in order to
be considered for the study. The included subjects reported
having an additional 2 to 9 years of education after high
school (M = 5.6 years). Seven of these subjects identified
themselves as white, and the remaining subject did not
report their race or ethnicity.

Practice-Control Sample

During the fifth year of data collection, we recruited six
additional older adults from the original sample to return
for a 5-year follow-up, allowing us to measure performance
in subjects who were less well practiced. Subjects were
selected for enrollment based on their availability to
return for additional testing. Although subjects were not
randomly assigned to the yearly-testing and practice-control
samples from the outset of the study, this control sample
still provides a useful comparison. These practice-control
subjects (four male, two female; four white, one black, one
race not reported) ranged from 62 to 79 years (M = 66.83)
at the start of the experiment, reported having 4–15 years of
education after high school (M = 6.8), and they completed
each burst in 1.1 – 6.3 weeks (M = 3.7).

PEERS Experiment

Each measurement burst was comprised of seven sessions
of the free recall task. At the beginning of each burst,
the Recent Life Changes Questionnaire (Miller and Rahe
1997) was administered to collect information about any
potential changes in each subject’s health or personal lives.
No subjects included in the current analyses developed a
medical condition that would have excluded them from
initial participation.

Each session included 16 free recall lists. For each list,
16 words were presented one at a time on a computer screen
followed by an immediate free recall test. Each stimulus was
drawn from a pool of 1638 words. Lists were constructed
such that varying degrees of semantic relatedness occurred
at both adjacent and distant serial positions.

For each list, there was a 1500 ms delay before the first
word appeared on the screen. Each item was on the screen
for 3000 ms, followed by a jittered (i.e., variable) inter-
stimulus interval of 800 − 1200 ms (uniform distribution).
After the last item in the list, a tone sounded, and a row of

asterisks appeared. The subject was then given 75 s to recall
aloud any of the just-presented items. Trained experimenters
scored recall accuracy from audio recordings of subjects’
recalls.

Results

Behavioral Results: Measurement Burst Study

The solid gray lines in Fig. 1a show changes in free recall
performance (proportion of words recalled) across sessions
and years for the yearly-testing sample. The data show
little sign of declining memory performance across years.
In fact, there is a modest increase from year 1 to year 5.
To quantify this trend, we began by conducting a linear
regression for each subject using the number of days that
had elapsed since their first session (defining session 1 as
day 1) to predict their memory performance in individual
sessions. This provided us with a slope (change in memory
performance each day) for each subject. We then multiplied
this slope by 365 to obtain an estimate of yearly memory
change, which we report in Fig. 1b.

The left-most bar in Fig. 1b shows that the average slope
was 0.0058 (i.e., on a 0 to 1.0 scale, performance increased
by 0.0058 per year), with 95% a confidence interval
that includes zero. Thus, there is a small, non-significant
increase across years.

Although performance increased only slightly across
years, examining performance within each measurement
burst (i.e., the seven sessions for a given year in Fig. 1a)
shows large increases from the first to the last session,
suggesting strong retest effects. To quantify these retest
effects, we used the model described in the Introduction to
simultaneously fit age-related change and the accumulation
of task experience.

We fit the model separately to the free recall performance
of each individual subject by minimizing the χ2 difference
value between the model predictions and observed data

using the equation χ2 = �n
i=1

(
pi−p̂i

SEp̄i

)2
, where n is the total

number of sessions completed by the subject, pi the actual
performance on day i, p̂i is the model’s prediction for day
i, and SEp̄i

is the standard error of pi calculated across the
lists of day i. To minimize χ2, for each subject, we first ran
a grid search by selecting 120 values for each of the four
model parameters (evenly spaced between zero and one for
β0, −0.025 – 0.025 change in recall probability per year for
βage, −0.5 – 0.5 for βretest , and 0.1 – 1.0 for d). We then
evaluated the parameter sets defined by the intersections of
the grid, for a total of 1204 parameter sets. Then for each
of the 1000 best fitting sets from the grid search, we used
the Interior Point method to find the local minimum and
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a b

Fig. 1 Yearly-testing Sample. a Mean observed performance by ses-
sion (gray) along with mean model fits (black) across the five years of
the study. N = 8 for years 1 – 4. N = 6 for year 5. b Slopes reflecting

change per year in observed free recall performance, model-estimated
practice effects, and model-estimated aging effects. All error bars are
95% bootstrapped confidence intervals

took the best of these local minima as the overall best fitting
parameter set.1

Each subject’s best fitting parameter values were used
to derive model-predicted performance across sessions.
These predictions (averaged across subjects) are shown by
the black lines in Fig. 1a. The means of the best fitting
parameter values are shown in Table 1.

To determine the extent to which age and retest effects
influence performance, we directly compared the model
predictions with the across-session slope observed in the
raw data (Fig. 1b). To do so, we used the model fits
to statistically isolate retest effects on the one hand and
aging effects on the other hand by using one component
of the model at a time (the age component or the practice
component) to predict performance. To isolate retest effects
for a subject, we used their fitted values of the intercept, β0,
and the retest-related parameters βretest and d to compute
the component of performance, p̂retest

i , that can be predicted
by test experience alone:

p̂retest
i = β0 +

(
βretest − βretest∑i

j=1t
−d
j

)
. (2)

1Rather than fitting each subject separately, as we have done, one could
instead fit all subjects simultaneously within a hierarchical model
in which hyper-parameters specify the distributions and covariance
structure of the individual-level parameters. For applications where the
the nature of the distributions (e.g., Gaussian vs. exGaussian, unimodal
vs. bimodal, etc.) can be reasonably hypothesised a priori, such a
hierarchical approach would be ideal. In situations where the nature of
the distributions is unknown, fitting individual subjects and examining
the resulting empirical distributions would be more appropriate.

The raw slope across sessions (which reflects both retest
effects and age effects) was positive as shown in the left-
most bar of Fig. 1b. To compare retest effects with this
raw slope, we computed a slope across sessions for the
p̂retest

i values predicted from retest effects alone. This slope,
shown in the middle bar of Fig. 1b, is positive with a 95%
confidence interval far above zero, suggesting that practice
effects contribute to the positive slope in the raw data.

Similarly, to isolate the age effect for each subject, we
used their fitted values of the intercept, β0, and the age
parameter, βage, to compute the component of performance,
p̂

age
i , that can be predicted by age alone:

p̂
age
i = β0 + βage(Age). (3)

We then computed a slope across sessions for the p̂
age
i

values predicted from age alone, which is shown in the
right-most bar in Fig. 1b. This age effect slope is not
different than zero (the 95% confidence interval extends
well below zero) and is significantly lower than the p̂retest

i

slope, (t (7) = −6.48, p < .01). These results confirm that
positive retest effects were obscuring age-related stability.

A null age effect combined with a small sample size
naturally raises concerns about statistical power. In the next

Table 1 Mean (standard deviation) of the fitted parameter values for
yearly-testing and practice-control groups

Parameter Yearly-testing Practice-Control

β0 .51 (.39) .38 (.36)

βage −0.0014 (0.0055) −0.0014 (0.0058)

βretest .14 (.05) .09 (.10)

d .35 (.22) .46 (.22)
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section, we report a series of analyses that measure the
power and type I error rate of our model-based analysis.

Establishing Power and Type I Error Rate

Although previous studies (Sliwinski et al. 2010; Munoz
et al. 2015) have applied similar models to a variety of
existing datasets, there are no clear guidelines on how to
make key decisions when designing a new measurement
burst study. Here, we conduct a simulation study to explore
how design factors such as sample size, number of sessions
per burst, and anticipated effect sizes influence type I error
rate (false alarms) and statistical power. To do so, we created
simulated datasets with known levels of age-related change,
retest effects, and noise and then tested the model’s ability
to detect the age effects given different sample sizes and
numbers of sessions per burst.

To set a realistic level of age-related change in our
simulations, we used data from the Betula project (Nilsson
et al. 1997), which tracked cognitive performance of several
hundred adults over 60 for several years on episodic
memory tasks including sentence recall, verbal cued recall,
and serial recall. The reported mean age-related change for
adults over 60 across all episodic memory tasks was −.0375
SD units per year. We translated this value into a change
in free recall performance by multiplying −.0375 by the
standard deviation of the proportion of items recalled for all
39 older adult subjects who completed the original cross-
sectional sample (SD = .0872). This produced a βage

coefficient of −0.00327, meaning that a normally aging
subject who recalls 40% of the study items in a session of
free recall can be expected to recall 0.40 − (.00327 × 5) =
.3837 or 38.37% of the items in a similar free recall test after
5 years, assuming there are no practice effects. We created
two other levels of simulated age effect: a “high” condition
where βage was set to 130% of the Betula project mean, and
a “no effect” condition where βage was set to zero (i.e., to
test the false positive rate of the model).

In addition to varying the size of the age effect, we also
varied the number of simulated subjects (n = 4, n = 8,
or n = 12) and the number of sessions per burst (5, 7, or
9). This resulted in a 3 (effect size) × 3 (sample size) ×
3 (number of sessions per burst) design. In all conditions,
each simulated subject completed five bursts (i.e., a 5 year
longitudinal measurement burst design). Each simulated
subject was assigned a testing date vector in which the
distance between bursts (400 days) as well as the distance
between sessions within bursts (5 days) were set to the
mean values observed in the PEERS data reported above.
Baseline memory performance and practice accumulation
effects were generated using the mean β0, βretest , and d

parameter values reported for the yearly-testing sample in
Table 1. To add realistic levels of noise to the simulated

data, a random perturbation was added to each simulated
data point. This perturbation was drawn from a normal
distribution with a mean and standard deviation equal to
the distribution of differences between each observation in
our data set and each data point created by the optimized
parameters.

We fit the model to each simulated subject by minimizing
the root-mean squared deviation (RMSD) between the
model predictions and the observed data (we could not use
χ2 because whereas for actual subjects we can calculate
SEp̄i

across lists in a session, the model provides a single
pi for each session, preventing us from estimating SEp̄i

).
As we did when fitting the actual data, for each simulated
subject we first ran a grid search and then used the Interior
Point method to find the local minimum at the best fitting
points of the grid and took the best of these local minima as
the overall best fitting parameter set. To make the simulation
run time tractable, we reduced the size of the grid to 54

and ran Interior Point algorithm from the best fitting 50
parameter sets from the grid.2 To determine if the model
detected the presence of an age effect, we computed the
slope across sessions of the p̂

age
i values predicted from

the recovered βage parameter values and tested whether the
mean across simulated subjects was significantly above zero
via a one-tailed t test with α = 0.05.

We repeated this entire procedure (generating simulated
data, fitting the model, testing for an age effect) 1000 times
for each condition of the 3 × 3 × 3 design. Thus, we can
estimate power in the high and medium age effect condition
as the proportion of 1000 simulations where the age effect
was detected by the t test. And we can estimate the type I
error rate in the zero effect conditions as the proportion of
false positives out of 1000.

Figure 2 shows that power exceeded 80% in most cases
with sample sizes of 8 and 12; however, it was consistently
below 50% for sample sizes of 4 in the medium-aging
condition. The one exception was the n = 8, 9 session
per burst, medium age effect condition in which power was
74.8%. Type I error rates in the zero effect conditions were
uniformly below .05. With 25 sessions, the average type I
error across all sample sizes was 3.7%, indicating that the
type I error rate was successfully set below α = 0.05. When
the number of sessions increased to 35 or 45, false alarm
rates fell to below one percent. These simulations show
that for episodic memory tasks, a sample size as small as
eight provides ample power to detect age effects of the size

2We explored how the use of different fitting algorithms influenced
power and false alarms. Fast heuristic algorithms (e.g., multistart,
Ugray et al. 2007) provided slightly lower power and type I error
rates whereas a slower but more exhaustive grid search provided
higher power. We encourage researchers to consider this tradeoff when
determining how to fit their own data.

204 Comput Brain Behav (2020) 3:200–207



N = 4 N = 8 N = 12

.0

.05

.1

T
yp

e 
I E

rr
or

 R
at

e

.0

.05

.1

T
yp

e 
I E

rr
or

 R
at

e

.0

.05

.1

T
yp

e 
I E

rr
or

 R
at

e

.0

.5

1.0

P
ow

er

.8

.0

.5

1.0

P
ow

er

.8

.0

.5

1.0

P
ow

er

.8

Fig. 2 Proportion of simulated data sets showing significant aging
effects as a function of sample size, number of sessions per burst, and
the true degree of age-related memory decline in the simulated data.
The left panel of each row shows the type I error rate when no effect
is present; a dashed horizontal line is drawn at the α = .05 level. Note
that there were no type I errors with nine sessions per burst and n > 4.
The right panel of each row shows the 1 − β power; a dashed line is
drawn at 80% power

reported in the literature with acceptable type I error rates,
even with as few as five sessions per burst. Of course, we
suggest using sample sizes greater than eight if resources
allow to maximize power and to leave room for losing
subjects to attrition. For other research areas, the simulation
methods used here can easily be adapted to estimate how
design decisions influence power and type I error.

Behavioral Results: Replicating Age-Related
Stability

As a final test of the model’s ability to discriminate practice
and age effects (and to show the replicability of the main
findings), we collected a second sample of data—from
subjects who received less test experience but had aged by
the same amount. Whereas the original sample completed
seven sessions a year for 5 years, the practice-control sample
completed seven sessions in year 1 but no further sessions
until year 5. If the model is truly able to remove retest
effects, providing a purer measure of age effects, then model
estimates from the two samples should reveal different
practice effects but equal age effects.

Figure 3 shows the results from the practice-control
group. The raw slope across years was slightly negative,
but this disguises a significant positive retest effect (the
95% confidence interval is slightly above zero) and a non-
significant age effect. Supporting the ability of the model
to distinguish practice from aging, the retest effect in this
practice-control sample was significantly smaller than the
retest effect in the yearly-testing sample, (t (12) = −3.59,
p < .01), but the age effects in the two samples did not
differ (t (12) = −.01, n.s.).

a b

Fig. 3 Practice-control sample. a Mean observed performance by ses-
sion (gray) along with mean model fits (black) across the five years
of the study. N = 6 for years 1 and 5. b Slopes reflecting change

per year in observed free recall performance, model-estimated prac-
tice effects, and model-estimated aging effects. All error bars are 95%
bootstrapped confidence intervals
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Discussion

Precisely measuring within-individual age-related change
requires a longitudinal design. But the repeated testing
inherent in traditional longitudinal designs tends to increase
performance such that the rate of age-related decline will be
underestimated unless retest effects are taken into account
(Salthouse 2015, 2016; Nilsson 2003). This retest problem
is exacerbated if the construct of interest requires intensive
testing to be reliably measured.

We attempted to overcome this problem by using a
measurement burst longitudinal design and applying a joint
model of retest and age effects, as suggested by Sliwinski
et al. (2010). The raw data showed a modest but non-
significant increase in memory performance over 5 years
of the study. But applying our model revealed significant
and substantial retest effects. Indeed, once the retest effect
was statistically removed, we found a slight (but non-
significant) age-related decline in memory ability over
5 years, consistent with the results of some traditional
longitudinal studies (Salthouse 2015, 2016). This finding
of substantial practice effects and small age-related change
was replicated in a second sample. Moreover, the model
was also able to accurately detect that the second sample
had received less test experience despite having aged by the
same amount. A series of simulations revealed that rates of
age-related memory change comparable with those reported
in the literature can be detected with adequate power with
samples as small as n = 8 and that increasing sample size
modestly to n = 12 provides over 90% power.

This result demonstrates that longitudinal research need
not be limited to projects that follow hundreds of subjects
for decades. It is possible to conduct longitudinal studies
with smaller samples for shorter periods of time, provided
one combines an intensive measurement burst design with a
model of retest effects. Of course, samples as small as the
one used here will only be appropriate when the population
of interest is fairly homogeneous. But our approach also
makes it more tractable to work with populations that
vary on factors such as level of education, economic
status, or risk-factors for cognitive decline, by reducing
the sample size required from each sub-group. The ability
to conduct smaller longitudinal studies allows for designs
that efficiently target specific research questions that have
traditionally been the domain of cross-sectional work. Here,
we applied the method to episodic memory performance,
and Munoz et al. (2015) applied a similar method to reaction
time data. This method could easily be adapted to other
research domains such as age-related change in social or
personality factors and even neural measurements.
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